ABOUT THE SPEAKER
Markus Fischer - Designer
Markus Fischer led the team at Festo that developed the first ultralight artificial bird capable of flying like a real bird.

Why you should listen

One of the oldest dreams of mankind is to fly like a bird. Many, from Leonardo da Vinci to contemporary research teams, tried to crack the "code" for the flight of birds, unsuccessfully. Until in 2011 the engineers of the Bionic Learning Network established by Festo, a German technology company, developed a flight model of an artificial bird that's capable of taking off and rising in the air by means of its flapping wings alone. It's called SmartBird. Markus Fischer is Festo's head of corporate design, where he's responsible for a wide array of initiatives. He established the Bionic Learning Network in 2006.

SmartBird is inspired by the herring gull. The wings not only beat up and down but twist like those of a real bird -- and seeing it fly leaves no doubt: it's a perfect technical imitation of the natural model, just bigger. (Even birds think so.) Its wingspan is almost two meters, while its carbon-fiber structure weighs only 450 grams.

Fischer says: "We learned from the birds how to move the wings, but also the need to be very energy efficient."

More profile about the speaker
Markus Fischer | Speaker | TED.com
TEDGlobal 2011

Markus Fischer: A robot that flies like a bird

如鸟儿飞翔的机器人

Filmed:
8,646,669 views

很多机器人都能飞--但是没有一个可以像一只真鸟儿那样真正飞翔。直到马库斯·菲舍尔(Markus Fischer)和他的团队在费斯托(Festo)成功造出智能鸟,这是一个大型,超轻,呈海鸥外形的机器人,如真鸟儿一样通过拍动翅膀飞行。看看它怎样在TEDGlobal2011大会上一飞冲天吧。
- Designer
Markus Fischer led the team at Festo that developed the first ultralight artificial bird capable of flying like a real bird. Full bio

Double-click the English transcript below to play the video.

00:15
It is a dream梦想 of mankind人类
0
0
3000
像鸟儿一样飞翔
00:18
to fly like a bird.
1
3000
2000
是人类的一个梦想。
00:20
Birds鸟类 are very agile敏捷.
2
5000
2000
鸟儿敏捷灵活。
00:22
They fly, not with rotating旋转 components组件,
3
7000
3000
它们不需借助旋转构件即可飞翔,
00:25
so they fly only by flapping their wings翅膀.
4
10000
3000
只要拍拍翅膀它们就能飞起来。
00:28
So we looked看着 at the birds鸟类,
5
13000
3000
所以我们仰望鸟儿,
00:31
and we tried试着 to make a model模型
6
16000
3000
并尝试去建一个模型
00:34
that is powerful强大, ultralight超轻,
7
19000
3000
这个模型必须超轻,
00:37
and it must必须 have excellent优秀 aerodynamic空气动力学的 qualities气质
8
22000
4000
并且具备卓越的空气动力性能
00:41
that would fly by its own拥有
9
26000
2000
从而拥有通过扇动翅膀
00:43
and only by flapping its wings翅膀.
10
28000
3000
来真正飞翔的能力。
00:46
So what would be better [than] to use
11
31000
3000
那么以什么鸟形建模好呢?
00:49
the Herring鲱鱼 Gull, in its freedom自由,
12
34000
2000
银鸥,这种鸟可以自由地
00:51
circling盘旋 and swooping俯冲 over the sea,
13
36000
2000
在海面上空盘旋和俯冲,
00:53
and [to] use this as a role角色 model模型?
14
38000
3000
我们选择以此建模。
00:56
So we bring带来 a team球队 together一起.
15
41000
2000
所以我们组建起一个团队。
00:58
There are generalists多面手 and also specialists专家
16
43000
3000
他们中有兼通各领域的多面手
01:01
in the field领域 of aerodynamics空气动力学
17
46000
3000
有空气动力学专家
01:04
in the field领域 of building建造 gliders滑翔机.
18
49000
2000
也有滑翔机制造专家。
01:06
And the task任务 was to build建立
19
51000
2000
我们的任务是
01:08
an ultralight超轻 indoor-flying室内飞扬 model模型
20
53000
3000
建一个超轻的可在室内飞行的模型
01:11
that is able能够 to fly over your heads.
21
56000
3000
可以飞过你们的头顶。
01:14
So be careful小心 later后来 on.
22
59000
3000
所以一会儿要小心咯。
01:19
And this was one issue问题:
23
64000
2000
但这曾是一个问题:
01:21
to build建立 it that lightweight轻量级
24
66000
2000
怎么把它造得非常轻
01:23
that no one would be hurt伤害
25
68000
2000
轻到如果它掉下来
01:25
if it fell下跌 down.
26
70000
3000
不会伤到人。
01:28
So why do we do all this?
27
73000
2000
为什么我们要这么做?
01:30
We are a company公司 in the field领域 of automation自动化,
28
75000
3000
我们是一家从事自动化控制的公司,
01:33
and we'd星期三 like to do very lightweight轻量级 structures结构
29
78000
3000
打算采用非常轻型的结构
01:36
because that's energy能源 efficient高效,
30
81000
2000
因为这样更节能。
01:38
and we'd星期三 like to learn学习 more about
31
83000
3000
而我们也想对
01:41
pneumatics气动 and air空气 flow phenomena现象.
32
86000
3000
气体力学和气流现象了解更多。
01:44
So I now would like you
33
89000
3000
现在希望诸位
01:47
to [put] your seat座位 belts皮带 on
34
92000
2000
系紧你们的安全带
01:49
and put your hats帽子 [on].
35
94000
2000
带好头盔。
01:51
So maybe we'll try it once一旦 --
36
96000
3000
我们来尝试一次
01:54
to fly a SmartBirdSmartBird.
37
99000
2000
放飞智能鸟吧。
01:56
Thank you.
38
101000
2000
谢谢。
01:58
(Applause掌声)
39
103000
6000
(鼓掌)
02:14
(Applause掌声)
40
119000
17000
(鼓掌)
02:52
(Applause掌声)
41
157000
15000
(鼓掌)
03:07
So we can now
42
172000
2000
现在我们可以
03:09
look at the SmartBirdSmartBird.
43
174000
3000
一睹智能鸟了。
03:12
So here is one without a skin皮肤.
44
177000
3000
这里是一个没有外壳的。
03:15
We have a wingspan翼展 of about two meters.
45
180000
3000
它的翼展约为两米。
03:18
The length长度 is one meter仪表 and six,
46
183000
3000
体长为一米六。
03:21
and the weight重量,
47
186000
2000
而体重
03:23
it is only 450 grams.
48
188000
3000
只有450克。
03:26
And it is all out of carbon fiber纤维.
49
191000
3000
它整体都是碳纤维材料做的。
03:29
In the middle中间 we have a motor发动机,
50
194000
2000
在中间有一个马达,
03:31
and we also have a gear齿轮 in it,
51
196000
4000
和齿轮结构。
03:35
and we use the gear齿轮
52
200000
2000
我们利用齿轮
03:37
to transfer转让 the circulation循环 of the motor发动机.
53
202000
3000
来转换马达的运动。
03:40
So within the motor发动机, we have three Hall大厅 sensors传感器,
54
205000
3000
马达上有三个霍尔传感器,
03:43
so we know exactly究竟 where
55
208000
3000
那么我们就知道
03:46
the wing翅膀 is.
56
211000
3000
翅膀的具体位置。
03:49
And if we now beat击败 up and down ...
57
214000
3000
如果让这翅膀上下拍打的话
03:56
we have the possibility可能性
58
221000
2000
那我们就有可能
03:58
to fly like a bird.
59
223000
2000
让它像鸟儿一样飞起来了。
04:00
So if you go down, you have the large area of propulsion动力,
60
225000
3000
当俯冲的时候,它的推进面积足够大。
04:03
and if you go up,
61
228000
3000
同时上行的时候,
04:06
the wings翅膀 are not that large,
62
231000
4000
翅膀也不是非常大,
04:10
and it is easier更轻松 to get up.
63
235000
3000
所以它比较容易爬升。
04:14
So, the next下一个 thing we did,
64
239000
3000
所以下一个事情,
04:17
or the challenges挑战 we did,
65
242000
2000
或者说下一个挑战我们面对的
04:19
was to coordinate坐标 this movement运动.
66
244000
3000
是如何协调这种运动。
04:22
We have to turn it, go up and go down.
67
247000
3000
我们必须使它飞上飞下。
04:25
We have a split分裂 wing翅膀.
68
250000
2000
我们采用了分裂式翼。
04:27
With a split分裂 wing翅膀
69
252000
2000
通过分裂式的翅膀设计
04:29
we get the lift电梯 at the upper wing翅膀,
70
254000
3000
使它通过上层翼得到升力,
04:32
and we get the propulsion动力 at the lower降低 wing翅膀.
71
257000
3000
下层翼得到推进力。
04:35
Also, we see
72
260000
2000
同时,我们也知道
04:37
how we measure测量 the aerodynamic空气动力学的 efficiency效率.
73
262000
3000
如何测算出它的空气动力效能。
04:40
We had knowledge知识 about
74
265000
2000
我们必须掌握
04:42
the electromechanical机电 efficiency效率
75
267000
2000
电机效率
04:44
and then we can calculate计算
76
269000
2000
然后就能计算出
04:46
the aerodynamic空气动力学的 efficiency效率.
77
271000
2000
空气动力效能。
04:48
So therefore因此,
78
273000
2000
所以,
04:50
it rises上升 up from passive被动 torsion扭力 to active活性 torsion扭力,
79
275000
3000
从被动扭曲力转化为主动扭曲力,它的效能从
04:53
from 30 percent百分
80
278000
2000
30%提高到
04:55
up to 80 percent百分.
81
280000
2000
80%。
04:57
Next下一个 thing we have to do,
82
282000
2000
下一件我们要做的,
04:59
we have to control控制 and regulate调节
83
284000
2000
就是要控制和调整
05:01
the whole整个 structure结构体.
84
286000
2000
整个结构。
05:03
Only if you control控制 and regulate调节 it,
85
288000
3000
只有控制和调整好它
05:06
you will get that aerodynamic空气动力学的 efficiency效率.
86
291000
3000
才能得到预期的空气动力效能。
05:09
So the overall总体 consumption消费 of energy能源
87
294000
3000
所以整体能量消耗
05:12
is about 25 watts at takeoff脱掉
88
297000
3000
大概是起飞25瓦
05:15
and 16 to 18 watts in flight飞行.
89
300000
3000
飞行是16到18瓦特。
05:18
Thank you.
90
303000
2000
谢谢
05:20
(Applause掌声)
91
305000
6000
(鼓掌)
05:26
Bruno布鲁诺 Giussani吉萨尼: Markus马库斯, I think that we should fly it once一旦 more.
92
311000
3000
布鲁诺·朱桑尼:马库斯,不如我们再放飞一次怎么样。
05:29
Markus马库斯 Fischer菲舍尔: Yeah, sure.
93
314000
2000
马库斯·菲舍尔:当然。
05:31
(Laughter笑声)
94
316000
2000
(笑声)
05:53
(Gasps喘气)
95
338000
3000
(惊叹)
06:02
(Cheers干杯)
96
347000
2000
(欢呼)
06:04
(Applause掌声)
97
349000
9000
(鼓掌)
Translated by Chunxiang Qian
Reviewed by Angelia King

▲Back to top

ABOUT THE SPEAKER
Markus Fischer - Designer
Markus Fischer led the team at Festo that developed the first ultralight artificial bird capable of flying like a real bird.

Why you should listen

One of the oldest dreams of mankind is to fly like a bird. Many, from Leonardo da Vinci to contemporary research teams, tried to crack the "code" for the flight of birds, unsuccessfully. Until in 2011 the engineers of the Bionic Learning Network established by Festo, a German technology company, developed a flight model of an artificial bird that's capable of taking off and rising in the air by means of its flapping wings alone. It's called SmartBird. Markus Fischer is Festo's head of corporate design, where he's responsible for a wide array of initiatives. He established the Bionic Learning Network in 2006.

SmartBird is inspired by the herring gull. The wings not only beat up and down but twist like those of a real bird -- and seeing it fly leaves no doubt: it's a perfect technical imitation of the natural model, just bigger. (Even birds think so.) Its wingspan is almost two meters, while its carbon-fiber structure weighs only 450 grams.

Fischer says: "We learned from the birds how to move the wings, but also the need to be very energy efficient."

More profile about the speaker
Markus Fischer | Speaker | TED.com