ABOUT THE SPEAKER
Ed Boyden - Neuroengineer
Ed Boyden is a professor of biological engineering and brain and cognitive sciences at the MIT Media Lab and the MIT McGovern Institute.

Why you should listen

Ed Boyden leads the Synthetic Neurobiology Group, which develops tools for analyzing and repairing complex biological systems such as the brain. His group applies these tools in a systematic way in order to reveal ground truth scientific understandings of biological systems, which in turn reveal radical new approaches for curing diseases and repairing disabilities. These technologies include expansion microscopy, which enables complex biological systems to be imaged with nanoscale precision, and optogenetic tools, which enable the activation and silencing of neural activity with light (TED Talk: A light switch for neurons). Boyden also co-directs the MIT Center for Neurobiological Engineering, which aims to develop new tools to accelerate neuroscience progress.

Amongst other recognitions, Boyden has received the Breakthrough Prize in Life Sciences (2016), the BBVA Foundation Frontiers of Knowledge Award (2015), the Carnegie Prize in Mind and Brain Sciences (2015), the Jacob Heskel Gabbay Award (2013), the Grete Lundbeck Brain Prize (2013) and the NIH Director's Pioneer Award (2013). He was also named to the World Economic Forum Young Scientist list (2013) and the Technology Review World's "Top 35 Innovators under Age 35" list (2006). His group has hosted hundreds of visitors to learn how to use new biotechnologies and spun out several companies to bring inventions out of his lab and into the world. Boyden received his Ph.D. in neurosciences from Stanford University as a Hertz Fellow, where he discovered that the molecular mechanisms used to store a memory are determined by the content to be learned. Before that, he received three degrees in electrical engineering, computer science and physics from MIT. He has contributed to over 300 peer-reviewed papers, current or pending patents and articles, and he has given over 300 invited talks on his group's work.

More profile about the speaker
Ed Boyden | Speaker | TED.com
TEDSummit

Ed Boyden: A new way to study the brain's invisible secrets

Ed Boyden: 由婴儿尿布所启发的大脑研究新法

Filmed:
1,501,957 views

神经工程学家Ed Boyden想要了解,我们脑中微小的生物分子是如何让我们产生情绪,思想和情感的;想要了解是怎样的生物分子变化导致了像癫痫和老年痴呆症这样的疾病。与其通过显微镜来观察这些几乎看不到的构造,他在想:可不可以将这些构造放大,然后进行观察?让我们来看看,他是怎样使用纸尿裤中含有的聚合物来更好地研究我们的大脑。
- Neuroengineer
Ed Boyden is a professor of biological engineering and brain and cognitive sciences at the MIT Media Lab and the MIT McGovern Institute. Full bio

Double-click the English transcript below to play the video.

00:12
Hello你好, everybody每个人.
0
904
1405
大家好
00:14
I brought with me today今天 a baby宝宝 diaper尿布.
1
2333
2643
今天我带来了婴儿纸尿布
00:18
You'll你会 see why in a second第二.
2
6793
1722
等一下,你们就知道为什么了
00:20
Baby宝宝 diapers尿布 have interesting有趣 properties性能.
3
8539
2010
婴儿纸尿布有些很有趣的特性
00:22
They can swell enormously巨大
when you add water to them,
4
10573
2691
比如加水会膨胀
00:25
an experiment实验 doneDONE
by millions百万 of kids孩子 every一切 day.
5
13288
2984
每天有数百万的小孩在做这个实验
00:28
(Laughter笑声)
6
16296
1150
(笑声)
00:29
But the reason原因 why
7
17470
1494
但尿布会膨胀的原因
00:30
is that they're designed设计
in a very clever聪明 way.
8
18988
2190
是源于它们的巧妙设计
00:33
They're made制作 out of a thing
called a swellable可膨胀 material材料.
9
21202
2635
它们是用可膨胀的材料制成
00:35
It's a special特别 kind of material材料 that,
when you add water,
10
23861
2737
如果把水加到这种特殊材料中
00:38
it will swell up enormously巨大,
11
26622
1430
它就会疯狂地膨胀
00:40
maybe a thousand times in volume.
12
28076
2166
体积约胀到1000倍
00:42
And this is a very useful有用,
industrial产业 kind of polymer聚合物.
13
30266
3236
这是个非常有用的工业类聚合物
00:45
But what we're trying to do
in my group at MITMIT
14
33819
2526
我在麻省理工学院的研究团队
00:48
is to figure数字 out if we can do
something similar类似 to the brain.
15
36369
3213
想要尝试用类似的方法让大脑膨胀
00:51
Can we make it bigger,
16
39606
1159
试试我们能否把人脑胀大
00:52
big enough足够 that you
can peer窥视 inside
17
40789
1678
大到可以让人窥视它的内部
00:54
and see all the tiny building建造 blocks,
the biomolecules生物分子,
18
42481
2628
看里面的小组件和生物分子
00:57
how they're organized有组织的 in three dimensions尺寸,
19
45133
2151
看它们在三度空间的组合方式
00:59
the structure结构体, the ground地面 truth真相
structure结构体 of the brain, if you will?
20
47308
3485
看大脑的结构和里面的实况
01:02
If we could get that,
21
50817
1158
如果办得到
01:03
maybe we could have a better understanding理解
of how the brain is organized有组织的
22
51999
3509
也许我们能更理解人脑的组织
01:07
to yield产量 thoughts思念 and emotions情绪
23
55532
1659
理解它如何产生思想和情感
01:09
and actions行动 and sensations感觉.
24
57215
1719
行动和感觉
01:10
Maybe we could try to pinpoint查明
the exact精确 changes变化 in the brain
25
58958
3415
或许我们可以知道究竟是什么产生了变化
01:14
that result结果 in diseases疾病,
26
62397
1776
导致大脑发生病变
01:16
diseases疾病 like Alzheimer's老年痴呆症
and epilepsy癫痫 and Parkinson's帕金森氏,
27
64197
3212
像是老年痴呆症、癫痫和帕金森氏症这些疾病
01:19
for which哪一个 there are few少数
treatments治疗, much less cures治愈,
28
67433
2578
这些疾病只有少数相应疗法,极少人可以被治愈
01:22
and for which哪一个, very often经常,
we don't know the cause原因 or the origins起源
29
70035
3617
我们往往不知道这些疾病的原因或者起源
01:25
and what's really causing造成 them to occur发生.
30
73676
2135
以及是什么引发了疾病
01:28
Now, our group at MITMIT
31
76613
1740
我们在麻省理工学院的研究小组
01:30
is trying to take
a different不同 point of view视图
32
78377
2686
正尝试采取不同的观点
01:33
from the way neuroscience神经科学 has
been doneDONE over the last hundred years年份.
33
81087
3230
这些观点有别于过往百年研究神经科学的方法
01:36
We're designers设计师. We're inventors发明家.
34
84341
1579
我们既是设计师,又是发明家
01:37
We're trying to figure数字 out
how to build建立 technologies技术
35
85944
2544
我们正在尝试怎样发明出新的科技
01:40
that let us look at and repair修理 the brain.
36
88512
2456
能让我们审视和修复大脑
01:42
And the reason原因 is,
37
90992
1151
这么做的原因是
01:44
the brain is incredibly令人难以置信,
incredibly令人难以置信 complicated复杂.
38
92167
2801
大脑的复杂程度令人难以置信
01:47
So what we've我们已经 learned学到了
over the first century世纪 of neuroscience神经科学
39
95484
2887
回望脑神经科学研究的第一个百年,我们得知了
01:50
is that the brain is a very
complicated复杂 network网络,
40
98395
2303
大脑是个很复杂的网络
01:52
made制作 out of very specialized专门
cells细胞 called neurons神经元
41
100722
2480
由称做神经元的特殊细胞
01:55
with very complex复杂 geometries几何,
42
103226
1667
以复杂的几何形状连结而成
01:56
and electrical电动 currents电流 will flow
through通过 these complexly复杂 shaped成形 neurons神经元.
43
104917
4237
电流可以通过这些形状复杂的神经元
02:01
Furthermore此外, neurons神经元
are connected连接的 in networks网络.
44
109653
2784
此外,神经元被连接在网络中
02:04
They're connected连接的 by little junctions路口
called synapses突触 that exchange交换 chemicals化学制品
45
112461
3835
它们通过被称为突触的微小连接口来交换化学物质
02:08
and allow允许 the neurons神经元
to talk to each other.
46
116320
2218
让神经元彼此间交流讯息
02:10
The density密度 of the brain is incredible难以置信.
47
118562
1940
大脑有着不可思议的高密度
02:12
In a cubic立方体 millimeter毫米 of your brain,
48
120526
2307
在每一立方毫米的大脑中
02:14
there are about 100,000 of these neurons神经元
49
122857
2457
约有十万个神经元
02:17
and maybe a billion十亿 of those connections连接.
50
125338
2517
可能有十亿个连接
02:20
But it's worse更差.
51
128887
1382
怎么可能进行研究
02:22
So, if you could zoom放大 in to a neuron神经元,
52
130293
2305
如果你能拉近神经元放大看
02:24
and, of course课程, this is just
our artist's艺术家 rendition翻译 of it.
53
132622
2750
当然,你们看到的这个只是我们的艺术家做的图像
02:27
What you would see are thousands数千
and thousands数千 of kinds of biomolecules生物分子,
54
135396
4207
你会看到成千上万种的生物分子
02:31
little nanoscale纳米级 machines
organized有组织的 in complex复杂, 3D patterns模式,
55
139627
4400
这些立体3D、纳米级的结构共同作用
02:36
and together一起 they mediate调解
those electrical电动 pulses脉冲,
56
144051
2628
产生电脉冲
02:38
those chemical化学 exchanges交流
that allow允许 neurons神经元 to work together一起
57
146703
3937
并交换化学物质,使神经元相互作用
02:42
to generate生成 things like thoughts思念
and feelings情怀 and so forth向前.
58
150664
3669
以产生想法、感觉等等
02:46
Now, we don't know how
the neurons神经元 in the brain are organized有组织的
59
154357
3764
我们不知道大脑中的神经元
02:50
to form形成 networks网络,
60
158145
1174
是如何形成网络系统的
02:51
and we don't know how
the biomolecules生物分子 are organized有组织的
61
159343
2500
我们也不知道生物分子
02:53
within neurons神经元
62
161867
1174
是如何在神经元中
02:55
to form形成 these complex复杂, organized有组织的 machines.
63
163065
2405
形成这复杂有序的机制的
02:57
If we really want to understand理解 this,
64
165918
1820
如果我们真想理解这些问题
02:59
we're going to need new technologies技术.
65
167762
1817
就必须有新的技术
03:01
But if we could get such这样 maps地图,
66
169603
1784
如果我们可以做出图像
03:03
if we could look at the organization组织
of molecules分子 and neurons神经元
67
171411
2943
让我们看得到分子和神经元的构造
03:06
and neurons神经元 and networks网络,
68
174378
1566
和神经元网络系统
03:07
maybe we could really understand理解
how the brain conducts行为 information信息
69
175968
3437
也许我们能真正了解大脑是如何传送
03:11
from sensory感觉的 regions地区,
70
179429
1167
来自感官区的信号
03:12
mixes混合 it with emotion情感 and feeling感觉,
71
180620
1736
从而混合入情绪和情感
03:14
and generates生成 our decisions决定 and actions行动.
72
182380
2394
以产生决策和行动
03:17
Maybe we could pinpoint查明 the exact精确 set
of molecular分子 changes变化 that occur发生
73
185131
3789
也许我们可以确切查明
03:20
in a brain disorder紊乱.
74
188944
1202
病变大脑中产生变化的分子
03:22
And once一旦 we know how
those molecules分子 have changed,
75
190170
2822
一旦我们弄清楚分子如何改变
03:25
whether是否 they've他们已经 increased增加 in number
or changed in pattern模式,
76
193016
2780
不论是数目增加或是型态改变
03:27
we could use those
as targets目标 for new drugs毒品,
77
195820
2939
我们可以把这些分子用来开发新药
03:30
for new ways方法 of delivering交付
energy能源 into the brain
78
198783
2271
用来发明新的把能量传送到大脑的方式
03:33
in order订购 to repair修理 the brain
computations计算 that are afflicted折磨
79
201078
3880
帮助受脑疾折磨的患者
03:36
in patients耐心 who suffer遭受
from brain disorders障碍.
80
204982
2299
修复它们脑中受损的地方
03:39
We've我们已经 all seen看到 lots of different不同
technologies技术 over the last century世纪
81
207793
3243
我们已经见证到,上个世纪有许多技术
03:43
to try to confront面对 this.
82
211060
1166
都尝试要解決这个问题
03:44
I think we've我们已经 all seen看到 brain scans扫描
83
212250
1880
我们都见过核磁共振成像仪
03:46
taken采取 using运用 MRIMRI machines.
84
214154
2034
被用来扫描脑部
03:48
These, of course课程, have the great power功率
that they are noninvasive无创,
85
216212
3347
当然,这些仪器有不具侵入性
03:51
they can be used on living活的 human人的 subjects主题.
86
219583
2355
所以可用于活体研究
03:54
But also, they're spatially空间地 crude原油.
87
222407
2231
但是它们的成像却很粗糙
03:56
Each of these blobs斑点 that you see,
or voxels, as they're called,
88
224662
2990
你可以看到的这些黄色块状物,或者立体像素
03:59
can contain包含 millions百万
and millions百万 of neurons神经元.
89
227676
2689
可能包含有数以百万计的神经元
04:02
So it's not at the level水平 of resolution解析度
90
230389
1850
这样的分辨率
04:04
where it can pinpoint查明
the molecular分子 changes变化 that occur发生
91
232263
2538
仍不足以查明是哪些分子发生了变化
04:06
or the changes变化 in the wiring接线
of these networks网络
92
234825
2286
或哪些连接有了变化
04:09
that contributes有助于 to our ability能力
to be conscious意识 and powerful强大 beings众生.
93
237135
3946
正是这些使我们成为有意识的强大的生物
04:13
At the other extreme极端,
you have microscopes显微镜.
94
241797
3181
另一个极端的仪器是显微镜
04:17
Microscopes显微镜, of course课程, will use light
to look at little tiny things.
95
245002
3295
显微镜利用光源来观察微小的东西
04:20
For centuries百年, they've他们已经 been used
to look at things like bacteria.
96
248321
3075
数百年来被用以观察像细菌这样的小东西
04:23
For neuroscience神经科学,
97
251420
1151
就神经科学来说
04:24
microscopes显微镜 are actually其实 how neurons神经元
were discovered发现 in the first place地点,
98
252595
3412
我们首次使用显微镜发现神经元
04:28
about 130 years年份 ago.
99
256031
1292
大约是在130年前
04:29
But light is fundamentally从根本上 limited有限.
100
257347
2318
但"光"有极大的局限性
04:31
You can't see individual个人 molecules分子
with a regular定期 old microscope显微镜.
101
259689
3298
用普通的旧式光学显微镜人们无法看到单个分子
04:35
You can't look at these tiny connections连接.
102
263011
2152
看不到这些微小的连接
04:37
So if we want to make our ability能力
to see the brain more powerful强大,
103
265187
3942
所以,如果我们要用更强而有力的方法
04:41
to get down to the ground地面 truth真相 structure结构体,
104
269153
2168
来观察大脑的结构
04:43
we're going to need to have
even better technologies技术.
105
271345
3280
我们需有更好的技术
04:47
My group, a couple一对 years年份 ago,
started开始 thinking思维:
106
275611
2224
几年前,我的研究小组开始思考
04:49
Why don't we do the opposite对面?
107
277859
1412
何不反向操作呢
04:51
If it's so darn complicated复杂
to zoom放大 in to the brain,
108
279295
2461
如果想试着拉近距离去观察大脑这么费劲
04:53
why can't we make the brain bigger?
109
281780
1943
我们为什么不把大脑变大呢
04:56
It initially原来 started开始
110
284166
1155
开始这个项目的是我组里的两个研究生
04:57
with two grad毕业 students学生们 in my group,
Fei Chen and Paul保罗 TillbergTillberg.
111
285345
2996
Fei Chen和Paul Tillberg
05:00
Now many许多 others其他 in my group
are helping帮助 with this process处理.
112
288365
2720
现在有更多人加入进来帮着做
05:03
We decided决定 to try to figure数字 out
if we could take polymers聚合物,
113
291109
2762
我们决定要找出方法,尝试利用聚合物
05:05
like the stuff东东 in the baby宝宝 diaper尿布,
114
293895
1629
就是婴儿纸尿裤中的那个材料
05:07
and install安装 it physically物理
within the brain.
115
295548
2006
把它放在大脑中
05:09
If we could do it just right,
and you add water,
116
297578
2241
如果做得恰到好处,再加入水
05:11
you can potentially可能 blow打击 the brain up
117
299843
1835
就可能把大脑放大到
05:13
to where you could distinguish区分
those tiny biomolecules生物分子 from each other.
118
301702
3377
足以把小分子个别地分辨出来的程度
05:17
You would see those connections连接
and get maps地图 of the brain.
119
305103
2870
这样你就可以看到脑中那些(神经元)连结的图像
05:19
This could potentially可能 be quite相当 dramatic戏剧性.
120
307997
1988
这相当激励人心
05:22
We brought a little demo演示 here.
121
310009
3008
我今天准备向各位演示一下
05:25
We got some purified净化的 baby宝宝 diaper尿布 material材料.
122
313538
2575
这有一些婴儿纸尿裤的原料
05:28
It's much easier更轻松
just to buy购买 it off the Internet互联网
123
316137
2274
在网上直接买这个
05:30
than to extract提取 the few少数 grains谷物
that actually其实 occur发生 in these diapers尿布.
124
318435
3475
比从纸尿布里提取少数原料要容易得多
05:33
I'm going to put just one teaspoon茶匙 here
125
321934
2225
我只放入一茶匙的
05:36
of this purified净化的 polymer聚合物.
126
324706
1794
精致聚合物
05:39
And here we have some water.
127
327270
2152
然后加入一些水
05:41
What we're going to do
128
329446
1162
接下来要做的
05:42
is see if this teaspoon茶匙
of the baby宝宝 diaper尿布 material材料
129
330632
3011
是看看这一茶匙的聚合物会不会
05:45
can increase增加 in size尺寸.
130
333667
1709
膨胀开来
05:48
You're going to see it increase增加 in volume
by about a thousandfold千倍的
131
336687
3696
现在,各位可以亲眼看到
05:52
before your very eyes眼睛.
132
340407
1286
它大约会膨胀一千倍
06:01
I could pour much more of this in there,
133
349597
1972
我可以继续加水
06:03
but I think you've got the idea理念
134
351593
1558
但大家肯定已经知道会发生什么了
06:05
that this is a very,
very interesting有趣 molecule分子,
135
353175
2502
这是一种非常有意思的分子
06:07
and if can use it in the right way,
136
355701
1912
如果使用得当
06:09
we might威力 be able能够
to really zoom放大 in on the brain
137
357637
2321
我们就可以观察到
06:11
in a way that you can't do
with past过去 technologies技术.
138
359982
2594
以前无法观察到的大脑细节
06:15
OK. So a little bit of chemistry化学 now.
139
363227
2054
好了,讲化学时间到
06:17
What's going on
in the baby宝宝 diaper尿布 polymer聚合物?
140
365305
2442
纸尿裤里的聚合物发生了什么呢
06:19
If you could zoom放大 in,
141
367771
1676
如果你能拉近放大来看
06:21
it might威力 look something like
what you see on the screen屏幕.
142
369471
2673
可能就像你现在在屏幕上看到的
06:24
Polymers聚合物 are chains of atoms原子
arranged安排 in long, thin lines线.
143
372168
4492
这个聚合物正是由原子排成的众多细长的链条组成
06:28
The chains are very tiny,
144
376684
1367
这些链条非常微小
06:30
about the width宽度 of a biomolecule生物分子,
145
378075
1864
大约是一个生物分子的宽度
06:31
and these polymers聚合物 are really dense稠密.
146
379963
1747
而且这些聚合物非常密集
06:33
They're separated分离 by distances距离
147
381734
1500
它们之间的距离
06:35
that are around the size尺寸 of a biomolecule生物分子.
148
383258
2252
大约是一个生物分子的大小
06:37
This is very good
149
385534
1165
这非常好
06:38
because we could potentially可能
move移动 everything apart距离 in the brain.
150
386723
3041
因为我们就可能把大脑每一部分都分解开
06:41
If we add water, what will happen发生 is,
151
389788
1848
如果再加入水
06:43
this swellable可膨胀 material材料
is going to absorb吸收 the water,
152
391660
2515
这个会膨胀的物质会吸收水分
06:46
the polymer聚合物 chains will move移动
apart距离 from each other,
153
394199
2400
聚合物链条彼此间的距离就会拉远
06:48
and the entire整个 material材料
is going to become成为 bigger.
154
396623
2634
整个体积就会变得更大
06:51
And because these chains are so tiny
155
399615
1814
由于这些链条是如此的渺小
06:53
and spaced间隔 by biomolecular生物分子 distances距离,
156
401453
2205
而且原本的间距只有一个生物分子那么一丁点大
06:55
we could potentially可能 blow打击 up the brain
157
403682
2039
所以我们可能令让大脑膨胀
06:57
and make it big enough足够 to see.
158
405745
1633
大到足以被观察
07:00
Here's这里的 the mystery神秘, then:
159
408020
1240
需要解决的一点是
07:01
How do we actually其实 make
these polymer聚合物 chains inside the brain
160
409284
3610
我们要如何把聚合物链置入大脑中
07:04
so we can move移动 all the biomolecules生物分子 apart距离?
161
412918
2239
让我们得以拉开生物分子的间距呢
07:07
If we could do that,
162
415181
1151
如果做得到
07:08
maybe we could get
ground地面 truth真相 maps地图 of the brain.
163
416356
2397
或许我们就能得到大脑图的实况
07:10
We could look at the wiring接线.
164
418777
1389
观察到大脑的连接系统
07:12
We can peer窥视 inside
and see the molecules分子 within.
165
420190
3157
及里面的分子状况
07:15
To explain说明 this, we made制作 some animations动画
166
423925
2481
我们准备了一个动画视频来解释这一点
07:18
where we actually其实 look
at, in these artist艺术家 renderings效果图,
167
426430
2603
在这个艺术家的作品中,我们可以看到
07:21
what biomolecules生物分子 might威力 look
like and how we might威力 separate分离 them.
168
429057
3541
生物分子的样貌和我们如何把它们分开的情况
07:24
Step one: what we'd星期三 have
to do, first of all,
169
432622
2549
步骤一:首先我们要做的是
07:27
is attach连接 every一切 biomolecule生物分子,
shown显示 in brown棕色 here,
170
435195
3389
在每一个棕色的生物分子上
07:30
to a little anchor, a little handle处理.
171
438608
2159
粘上一个小锚,小把手
07:32
We need to pull the molecules分子
of the brain apart距离 from each other,
172
440791
3095
想要把大脑中分子之间的距离拉远
07:35
and to do that, we need
to have a little handle处理
173
443910
2326
我们需要利用这些小把手
07:38
that allows允许 those polymers聚合物 to bind捆绑 to them
174
446260
2285
让聚合物和分子连接起来
07:40
and to exert发挥 their force.
175
448569
1542
因此让聚合物产生效应
07:43
Now, if you just take baby宝宝 diaper尿布
polymer聚合物 and dump倾倒 it on the brain,
176
451278
3161
如果只把尿布中的聚合物直接倒在大脑上
07:46
obviously明显, it's going to sit there on top最佳.
177
454463
2037
很显然,它们就只会堆在上面而已
07:48
So we need to find a way
to make the polymers聚合物 inside.
178
456524
2528
因此,我们需要找个方法让聚合物进到大脑里面去
07:51
And this is where we're really lucky幸运.
179
459076
1788
在研究过程中我们特别幸运
07:52
It turns out, you can
get the building建造 blocks,
180
460888
2188
发现我们可以利用一些建筑块
07:55
monomers单体, as they're called,
181
463100
1372
一种被叫做"单体"的东西
07:56
and if you let them go into the brain
182
464496
1784
如果把它们放到大脑里面
07:58
and then trigger触发 the chemical化学 reactions反应,
183
466304
2036
它们就会触发化学反应
08:00
you can get them to form形成
those long chains,
184
468364
2702
然后在大脑组织里
08:03
right there inside the brain tissue组织.
185
471090
1798
形成细长的链条
08:05
They're going to wind their way
around biomolecules生物分子
186
473325
2397
这些链条会缠绕住生物分子
08:07
and between之间 biomolecules生物分子,
187
475746
1221
也会占住生物分子间的空隙
08:08
forming成型 those complex复杂 webs
188
476991
1625
形成复杂的网络
08:10
that will allow允许 you, eventually终于,
to pull apart距离 the molecules分子
189
478640
2862
最终,这可以使
08:13
from each other.
190
481526
1175
大脑中的分子被拉开
08:14
And every一切 time one
of those little handles手柄 is around,
191
482725
3054
在有小把手的地方
08:17
the polymer聚合物 will bind捆绑 to the handle处理,
and that's exactly究竟 what we need
192
485803
3350
聚合物就会粘住这些把手
08:21
in order订购 to pull the molecules分子
apart距离 from each other.
193
489177
2531
正好可以成为拉开分子的施力点
08:23
All right, the moment时刻 of truth真相.
194
491732
1693
好吧,讲到关键时刻
08:25
We have to treat对待 this specimen标本
195
493449
2148
我们得先用化学物质处理样本
08:27
with a chemical化学 to kind of loosen松开 up
all the molecules分子 from each other,
196
495621
3446
让分子彼此分散开
08:31
and then, when we add water,
197
499091
1836
然后加水
08:32
that swellable可膨胀 material材料 is going
to start开始 absorbing吸收 the water,
198
500951
2953
这个会膨胀的材料开始吸收水分
08:35
the polymer聚合物 chains will move移动 apart距离,
199
503928
1703
聚合物链条会移动开来
08:37
but now, the biomolecules生物分子
will come along沿 for the ride.
200
505655
2722
这一次,生物分子也会跟随着一起移动
08:40
And much like drawing画画
a picture图片 on a balloon气球,
201
508401
2164
就像一个被画了图画的气球
08:42
and then you blow打击 up the balloon气球,
202
510589
1587
如果被吹大
08:44
the image图片 is the same相同,
203
512200
1290
气球上的画还是同一幅画
08:45
but the ink墨水 particles粒子 have moved移动
away from each other.
204
513514
2548
但是上面的颜色分子间的距离被拉大了
08:48
And that's what we've我们已经 been able能够
to do now, but in three dimensions尺寸.
205
516086
3467
这正是我们所做的,不过是在三维空间里
08:51
There's one last trick.
206
519577
1999
还有最后一个点
08:53
As you can see here,
207
521600
1218
如你所见
08:54
we've我们已经 color-coded颜色编码
all the biomolecules生物分子 brown棕色.
208
522842
2109
我们把所有的生物分子都标成棕色
08:56
That's because they all
kind of look the same相同.
209
524975
2170
这是因为他们看起来都差不多是一样的
08:59
Biomolecules生物分子 are made制作
out of the same相同 atoms原子,
210
527169
2105
生物分子由相同的原子组成
09:01
but just in different不同 orders命令.
211
529298
2240
只是顺序有差异
09:03
So we need one last thing
212
531562
1500
最后,我们还要做一件事
09:05
in order订购 to make them visible可见.
213
533086
1695
来把他们辨别出来
09:06
We have to bring带来 in little tags标签,
214
534805
1579
我们需要利用发光的染料
09:08
with glowing泛着 dyes染料
that will distinguish区分 them.
215
536408
3019
作为区分他们的标示
09:11
So one kind of biomolecule生物分子
might威力 get a blue蓝色 color颜色.
216
539451
2673
所以某一种生物分子可能会被标成蓝色
09:14
Another另一个 kind of biomolecule生物分子
might威力 get a red color颜色.
217
542148
2351
而另一种会被标成红色
09:16
And so forth向前.
218
544523
1276
等等
09:17
And that's the final最后 step.
219
545823
1552
这就是最后一步
09:19
Now we can look at something like a brain
220
547399
2278
如此,我们就可以观察到大脑
09:21
and look at the individual个人 molecules分子,
221
549701
1796
和一个个不同的分子
09:23
because we've我们已经 moved移动 them
far apart距离 enough足够 from each other
222
551521
2707
因为我们已经把分子拉得足够开
09:26
that we can tell them apart距离.
223
554252
1698
可以对它们进行分辨
09:27
So the hope希望 here is that
we can make the invisible无形 visible可见.
224
555974
2834
我们愿望是把不可见的变成可见的
09:30
We can turn things that might威力 seem似乎
small and obscure朦胧
225
558832
2566
把小而模糊的东西放大
09:33
and blow打击 them up
226
561422
1151
并且不停地放大
09:34
until直到 they're like constellations星座
of information信息 about life.
227
562597
3177
直到它们看起来像是生命信息的星座图
09:37
Here's这里的 an actual实际 video视频
of what it might威力 look like.
228
565798
2375
这个视频正可以展现这个过程
09:40
We have here a little brain in a dish --
229
568197
2371
碟里放着一個小小的脑
09:42
a little piece of a brain, actually其实.
230
570592
1747
实际上是一片脑标本的切片
09:44
We've我们已经 infused输注 the polymer聚合物 in,
231
572363
1596
我们已在里面注入聚合物
09:45
and now we're adding加入 water.
232
573983
1467
现在要加水
09:47
What you'll你会 see is that,
right before your eyes眼睛 --
233
575474
2358
你们现在看到的
09:49
this video视频 is sped加快 up about sixtyfold六十倍 --
234
577856
1923
是以加快了60倍速度放映的视频
09:51
this little piece of brain tissue组织
is going to grow增长.
235
579803
2725
这小片脑组织将会胀大
09:54
It can increase增加 by a hundredfold百倍
or even more in volume.
236
582552
3180
它的体积将会胀成百倍或更大
09:57
And the cool part部分 is, because
those polymers聚合物 are so tiny,
237
585756
2949
最牛的是,因为聚合物是如此渺小
10:00
we're separating分离 biomolecules生物分子
evenly from each other.
238
588729
2559
我们能均匀地分开这些生物分子
10:03
It's a smooth光滑 expansion扩张.
239
591312
1658
这个过程会缓慢有序地进行
10:04
We're not losing失去 the configuration组态
of the information信息.
240
592994
2687
而且信息的型态不会失真
10:07
We're just making制造 it easier更轻松 to see.
241
595705
2700
我们只是把它变得更容易被观察
10:11
So now we can take
actual实际 brain circuitry电路 --
242
599333
2176
现在我们可以取一个真实的大脑神经组织
10:13
here's这里的 a piece of the brain
involved参与 with, for example, memory记忆 --
243
601533
3134
例如这片与记忆有关的部分
10:16
and we can zoom放大 in.
244
604691
1263
拉近放大后
10:17
We can start开始 to actually其实 look at
how circuits电路 are configured配置.
245
605978
2890
就可以看到实际的神经电路构造
10:20
Maybe someday日后 we could read out a memory记忆.
246
608892
1968
也许有一天我们能读出一段记忆
10:22
Maybe we could actually其实 look
at how circuits电路 are configured配置
247
610884
2779
也许我们能看到大脑在处理情绪的过程中
10:25
to process处理 emotions情绪,
248
613687
1152
脑神经的回路状态
10:26
how the actual实际 wiring接线
of our brain is organized有组织的
249
614863
2922
以及脑内的神经是如何连结的
10:29
in order订购 to make us who we are.
250
617809
2567
正是这些决定了人与人思想之间的区别
10:32
And of course课程, we can pinpoint查明, hopefully希望,
251
620400
2047
当然我们也更希望
10:34
the actual实际 problems问题 in the brain
at a molecular分子 level水平.
252
622471
3159
能在脑分子层面上分析出脑部病变的原因
10:37
What if we could actually其实
look into cells细胞 in the brain
253
625654
2569
试想,假如我们真的深入到大脑细胞里
10:40
and figure数字 out, wow, here are the 17
molecules分子 that have altered改变
254
628247
3083
发现原来大脑组织中的有17个分子发生了病变
10:43
in this brain tissue组织 that has been
undergoing经历 epilepsy癫痫
255
631354
3455
所以病人患了癫痫
10:46
or changing改变 in Parkinson's帕金森氏 disease疾病
256
634833
1650
或者帕金森氏综合症
10:48
or otherwise除此以外 being存在 altered改变?
257
636507
1517
以及其它疾病,那就太好了
10:50
If we get that systematic系统的 list名单
of things that are going wrong错误,
258
638048
3043
如果我们能有系统地把这些变异列表
10:53
those become成为 our therapeutic治疗 targets目标.
259
641115
2199
这就会变成我们治疗的目标
10:55
We can build建立 drugs毒品 that bind捆绑 those.
260
643338
1677
我们可以针对那些目标来制药
10:57
We can maybe aim目标 energy能源
at different不同 parts部分 of the brain
261
645039
2627
或许我们能集中精力研究不同的大脑部位
10:59
in order订购 to help people
with Parkinson's帕金森氏 or epilepsy癫痫
262
647690
2687
以帮助世界各地
11:02
or other conditions条件 that affect影响
over a billion十亿 people
263
650401
2551
患有帕金森症、癫痫病
11:04
around the world世界.
264
652976
1213
或其他病症的十亿人口
11:07
Now, something interesting有趣
has been happening事件.
265
655246
2206
有一种有意思的现象正在发生
11:09
It turns out that throughout始终 biomedicine生物医药,
266
657476
2705
原来,这个方法对整个生物医药界的研究
11:12
there are other problems问题
that expansion扩张 might威力 help with.
267
660205
2666
也许都能帮得上忙
11:14
This is an actual实际 biopsy活检
from a human人的 breast乳房 cancer癌症 patient患者.
268
662895
3234
这是来自一个乳腺癌患者的活体标本
11:18
It turns out that if you look at cancers癌症,
269
666505
2188
实际上,癌症
11:20
if you look at the immune免疫的 system系统,
270
668717
1611
免疫系统
11:22
if you look at aging老化,
if you look at development发展 --
271
670352
2513
老化,生长
11:24
all these processes流程 are involving涉及
large-scale大规模 biological生物 systems系统.
272
672889
4497
所有这些过程都与大规模的生物系统有关
11:29
But of course课程, the problems问题 begin开始
with those little nanoscale纳米级 molecules分子,
273
677410
4024
当然,问题是从纳米级的分子开始的
11:33
the machines that make the cells细胞
and the organs器官 in our body身体 tick.
274
681458
3869
这些分子正是引发细胞和器官活动的机器
11:37
So what we're trying
to do now is to figure数字 out
275
685351
2222
我们目前正在试着理清
是否真的能用这个技术描绘出
11:39
if we can actually其实 use this technology技术
to map地图 the building建造 blocks of life
276
687597
3466
各式各样疾病中基础生命结构组成的脉络
11:43
in a wide variety品种 of diseases疾病.
277
691087
1745
11:44
Can we actually其实 pinpoint查明
the molecular分子 changes变化 in a tumor
278
692856
2896
我们能否精确地看到肿瘤的分子变化
11:47
so that we can actually其实
go after it in a smart聪明 way
279
695776
2369
从而更有效地应对
11:50
and deliver交付 drugs毒品 that might威力 wipe擦拭 out
exactly究竟 the cells细胞 that we want to?
280
698169
3944
并将药物直接传送到我们想要的位置内呢
11:54
You know, a lot of medicine医学
is very high risk风险.
281
702137
2335
要知道,很多药物的风险非常高
11:56
Sometimes有时, it's even guesswork猜测.
282
704496
1782
有的药物并未被确定真正有效
11:58
My hope希望 is we can actually其实 turn
what might威力 be a high-risk高风险 moon月亮 shot射击
283
706626
3875
我希望我们不只以高风险的登月思维做事
12:02
into something that's more reliable可靠.
284
710525
1769
而是发现更可靠的方式
12:04
If you think about the original原版的 moon月亮 shot射击,
285
712318
2055
如果仔细想想我们的登月计划
12:06
where they actually其实 landed登陆 on the moon月亮,
286
714397
1898
宇航员登陆月球的壮举
12:08
it was based基于 on solid固体 science科学.
287
716319
1444
是基于扎实的科学研究的
12:09
We understood了解 gravity重力;
288
717787
1603
我们通晓重力
12:11
we understood了解 aerodynamics空气动力学.
289
719414
1341
通晓空气动力学
12:12
We knew知道 how to build建立 rockets火箭.
290
720779
1395
知道如何建造火箭
12:14
The science科学 risk风险 was under control控制.
291
722198
2468
科学的风险在我们的掌控之中
12:16
It was still a great, great
feat功绩 of engineering工程.
292
724690
2753
至今,登月仍是个伟大的工程壮举
12:19
But in medicine医学, we don't
necessarily一定 have all the laws法律.
293
727467
2645
但在医学上,我们未必有定律可循
12:22
Do we have all the laws法律
that are analogous类似 to gravity重力,
294
730136
3109
我们未必能研究出类似重力
12:25
that are analogous类似 to aerodynamics空气动力学?
295
733269
2344
和类似空气动力学的所有定律
12:27
I would argue争论 that with technologies技术
296
735637
1730
我认为,以我今天所谈论的技术
12:29
like the kinds I'm talking about today今天,
297
737391
1872
也许某天我们真的能够
12:31
maybe we can actually其实 derive派生 those.
298
739287
1693
导出那些定律来
12:33
We can map地图 the patterns模式
that occur发生 in living活的 systems系统,
299
741004
2857
我们能描绘和测绘生命系统的模型
12:35
and figure数字 out how to overcome克服
the diseases疾病 that plague鼠疫 us.
300
743885
4558
找出方法来克服困扰我们的疾病
12:41
You know, my wife妻子 and I
have two young年轻 kids孩子,
301
749499
2079
我妻子和我有两个年幼的孩子
12:43
and one of my hopes希望 as a bioengineer生物工程
is to make life better for them
302
751602
3234
身为一个生物工程学家,我有个心愿是
12:46
than it currently目前 is for us.
303
754860
1729
希望孩子们未来的生活能比目前我们的更美好
12:48
And my hope希望 is, if we can
turn biology生物学 and medicine医学
304
756613
3730
我希望我们能把生物学和医学的研究
12:52
from these high-risk高风险 endeavors努力
that are governed治理 by chance机会 and luck运气,
305
760367
4357
从偶然和运气支配又高风险的努力
12:56
and make them things
that we win赢得 by skill技能 and hard work,
306
764748
3927
转向以技艺和勤奋支配却真正有效的工作
13:00
then that would be a great advance提前.
307
768699
1898
那么这将是一个巨大的进步
13:02
Thank you very much.
308
770621
1206
非常感谢
13:03
(Applause掌声)
309
771851
10383
(掌声)
Translated by JingZe Wu
Reviewed by Tianyu Qiao

▲Back to top

ABOUT THE SPEAKER
Ed Boyden - Neuroengineer
Ed Boyden is a professor of biological engineering and brain and cognitive sciences at the MIT Media Lab and the MIT McGovern Institute.

Why you should listen

Ed Boyden leads the Synthetic Neurobiology Group, which develops tools for analyzing and repairing complex biological systems such as the brain. His group applies these tools in a systematic way in order to reveal ground truth scientific understandings of biological systems, which in turn reveal radical new approaches for curing diseases and repairing disabilities. These technologies include expansion microscopy, which enables complex biological systems to be imaged with nanoscale precision, and optogenetic tools, which enable the activation and silencing of neural activity with light (TED Talk: A light switch for neurons). Boyden also co-directs the MIT Center for Neurobiological Engineering, which aims to develop new tools to accelerate neuroscience progress.

Amongst other recognitions, Boyden has received the Breakthrough Prize in Life Sciences (2016), the BBVA Foundation Frontiers of Knowledge Award (2015), the Carnegie Prize in Mind and Brain Sciences (2015), the Jacob Heskel Gabbay Award (2013), the Grete Lundbeck Brain Prize (2013) and the NIH Director's Pioneer Award (2013). He was also named to the World Economic Forum Young Scientist list (2013) and the Technology Review World's "Top 35 Innovators under Age 35" list (2006). His group has hosted hundreds of visitors to learn how to use new biotechnologies and spun out several companies to bring inventions out of his lab and into the world. Boyden received his Ph.D. in neurosciences from Stanford University as a Hertz Fellow, where he discovered that the molecular mechanisms used to store a memory are determined by the content to be learned. Before that, he received three degrees in electrical engineering, computer science and physics from MIT. He has contributed to over 300 peer-reviewed papers, current or pending patents and articles, and he has given over 300 invited talks on his group's work.

More profile about the speaker
Ed Boyden | Speaker | TED.com