ABOUT THE SPEAKER
Joseph DeSimone - Chemist, inventor
The CEO of Carbon3D, Joseph DeSimone has made breakthrough contributions to the field of 3D printing.

Why you should listen

Joseph DeSimone is a scholar, inventor and serial entrepreneur. A longtime professor at UNC-Chapel Hill, he's taken leave to become the CEO at Carbon3D, the Silicon Valley 3D printing company he co-founded in 2013. DeSimone, an innovative polymer chemist, has made breakthrough contributions in fluoropolymer synthesis, colloid science, nano-biomaterials, green chemistry and most recently 3D printing. His company's Continuous Liquid Interface Production (CLIP) suggests a breakthrough way to make 3D parts.

Read the paper in Science. Authors: John R. Tumbleston, David Shirvanyants, , Nikita Ermoshkin, Rima Janusziewicz, Ashley R. Johnson, David Kelly, Kai Chen, Robert Pinschmidt, Jason P. Rolland, Alexander Ermoshkin, Edward T. Samulsk.

DeSimone is one of less than twenty individuals who have been elected to all three branches of the National Academies: Institute of Medicine (2014), National Academy of Sciences (2012) and the National Academy of Engineering (2005), and in 2008 he won the $500,000 Lemelson-MIT Prize for Invention and Innovation. He's the co-founder of several companies, including Micell Technologies, Bioabsorbable Vascular Solutions, Liquidia Technologies and Carbon3D.

More profile about the speaker
Joseph DeSimone | Speaker | TED.com
TED2015

Joseph DeSimone: What if 3D printing was 100x faster?

乔伊 狄西蒙: 倘若3D打印快100倍?

Filmed:
3,783,429 views

狄西蒙:我们所认识的3D打印技术,实际上只是重复进行的2D打印,效率很低… 狄西蒙在TED2015讲台上,揭秘了一种大胆新颖的技术。——技术灵感正是来自于《终结者2》——此项技术的运用可使3D打印加速25到100倍,并制造出光滑耐用的部件。这能否最终帮助3D打印实现它的光明前景呢?
- Chemist, inventor
The CEO of Carbon3D, Joseph DeSimone has made breakthrough contributions to the field of 3D printing. Full bio

Double-click the English transcript below to play the video.

00:12
I'm thrilled高兴 to be here tonight今晚
0
949
1824
我今天非常荣幸在此
00:14
to share分享 with you something
we've我们已经 been working加工 on
1
2773
2379
与大家分享我们最近两年
所致力研究的成果,
00:17
for over two years年份,
2
5152
2090
00:19
and it's in the area
of additive添加剂 manufacturing制造业,
3
7242
2554
这些成果是在积层制造领域取得的,
00:21
also known已知 as 3D printing印花.
4
9796
2717
也就是所谓的3D打印。
00:24
You see this object目的 here.
5
12513
1718
大家可以看下我手里这个东西。
00:26
It looks容貌 fairly相当 simple简单,
but it's quite相当 complex复杂 at the same相同 time.
6
14231
3808
看似简单,但又相当复杂。
00:30
It's a set of concentric同心
geodesic structures结构
7
18549
3251
这是一个同心和密网格结构的组合,
00:33
with linkages联系 between之间 each one.
8
21800
2995
每个部分都彼此相连。
00:36
In its context上下文, it is not manufacturable可制造
by traditional传统 manufacturing制造业 techniques技术.
9
24795
6002
它并非传统制造技术所能完成。
00:43
It has a symmetry对称 such这样
that you can't injection注射 mold模子 it.
10
31343
3947
结构具有对称性,因此不能注塑模具。
00:47
You can't even manufacture制造 it
through通过 milling.
11
35290
3589
甚至不能通过铣削制造。
这需要3D打印技术来实现,
00:51
This is a job工作 for a 3D printer打印机,
12
39470
2647
但大多数3D打印机需要
3-10小时来完成整个制造过程,
00:54
but most 3D printers打印机 would take between之间
three and 10 hours小时 to fabricate制造 it,
13
42117
4481
00:58
and we're going to take the risk风险 tonight今晚
to try to fabricate制造 it onstage在舞台上
14
46598
4226
今晚我们会尝试用
我上台演讲的10分钟时间
01:02
during this 10-minute-分钟 talk.
15
50824
2577
来完成这个制造过程。
01:05
Wish希望 us luck运气.
16
53401
2039
祝我们好运吧!
“3D打印”的叫法其实并不恰当。
01:08
Now, 3D printing印花 is actually其实 a misnomer用词不当.
17
56350
3274
技术的本质是反复进行二维印刷,
01:11
It's actually其实 2D printing印花
over and over again,
18
59624
3775
01:15
and it in fact事实 uses使用 the technologies技术
associated相关 with 2D printing印花.
19
63919
3842
采用的是二维印刷的相关技术。
试想你正在使用喷墨打印机
在纸上打印文字,
01:20
Think about inkjet喷墨 printing印花 where you
lay铺设 down ink墨水 on a page to make letters,
20
68401
4959
01:25
and then do that over and over again
to build建立 up a three-dimensional三维 object目的.
21
73360
4986
反复进行这一过程
就可以构建一个三维物体。
01:30
In microelectronics微电子, they use something
22
78346
2071
在微电子学中,
人们使用相同原理的光刻技术,
01:32
called lithography光刻 to do
the same相同 sort分类 of thing,
23
80417
2320
01:34
to make the transistors晶体管
and integrated集成 circuits电路
24
82737
2208
来制造晶体管和集成电路,
反复构建一个结构。
01:36
and build建立 up a structure结构体 several一些 times.
25
84945
2052
01:38
These are all 2D printing印花 technologies技术.
26
86997
2402
这些都是二维印刷技术。
01:42
Now, I'm a chemist化学家,
a material材料 scientist科学家 too,
27
90099
3888
我是个化学家,也是材料学家,
01:45
and my co-inventors共同发明人
are also material材料 scientists科学家们,
28
93987
2724
我的发明伙伴也都是材料学家,
一个是化学家,一个物理学家,
01:48
one a chemist化学家, one a physicist物理学家,
29
96711
2299
01:51
and we began开始 to be
interested有兴趣 in 3D printing印花.
30
99010
2926
我们开始对3D打印产生了浓厚的兴趣。
01:53
And very often经常, as you know,
new ideas思路 are often经常 simple简单 connections连接
31
101936
5595
大家知道,新颖的想法往往只是一些
不同机构里跨领域跨背景的人
相互沟通后的产物,
01:59
between之间 people with different不同 experiences经验
in different不同 communities社区,
32
107531
3743
而这就是我们的故事。
02:03
and that's our story故事.
33
111274
1477
02:05
Now, we were inspired启发
34
113591
2531
我们的灵感来源于
02:08
by the "Terminator终结者 2" scene现场 for T-T-1000,
35
116122
4771
《终结者2》的机器人T-1000
出现的一个场景,
02:12
and we thought, why couldn't不能 a 3D printer打印机
operate操作 in this fashion时尚,
36
120893
4943
而后我们就产生了这样的疑问:为何3D打印机
不能通过这样的方式来运行?
02:18
where you have an object目的
arise出现 out of a puddle水坑
37
126426
3936
让一个物体从液体中成形,
达到实时完成并
02:23
in essentially实质上 real真实 time
38
131052
2468
02:25
with essentially实质上 no waste浪费
39
133520
2229
避免造成浪费的目的,
02:27
to make a great object目的?
40
135749
2322
又能制造出很棒的物体。
就像电影中那样。
02:30
Okay, just like the movies电影.
41
138071
1417
我们可否取材好莱坞,
02:31
And could we be inspired启发 by Hollywood好莱坞
42
139488
3389
02:34
and come up with ways方法
to actually其实 try to get this to work?
43
142877
3507
找出办法真正尝试实现这一效果?
这就是我们面临的挑战。
02:38
And that was our challenge挑战.
44
146384
2066
02:40
And our approach途径 would be,
if we could do this,
45
148450
3367
而我们的思路是,
如果我们能做到,
那我们就可以从根本上解决
02:43
then we could fundamentally从根本上 address地址
the three issues问题 holding保持 back 3D printing印花
46
151817
3854
阻碍3D打印进入制造工程的三个难题。
02:47
from being存在 a manufacturing制造业 process处理.
47
155671
2415
02:50
One, 3D printing印花 takes forever永远.
48
158086
2531
首先,3D打印耗时太长。
02:52
There are mushrooms蘑菇 that grow增长 faster更快
than 3D printed印刷的 parts部分. (Laughter笑声)
49
160617
5224
甚至某些蘑菇生长速度
都比3D打印制造还快。(笑声)
积层叠加的制造工艺
02:59
The layer by layer process处理
50
167281
2136
03:01
leads引线 to defects缺陷
in mechanical机械 properties性能,
51
169417
2902
使得机械性能存在缺陷,
如果能实现无间断制造,
就可以消除这些缺陷。
03:04
and if we could grow增长 continuously一直,
we could eliminate消除 those defects缺陷.
52
172319
3947
03:08
And in fact事实, if we could grow增长 really fast快速,
we could also start开始 using运用 materials物料
53
176266
5132
事实上,如果生产速度够快,
也可以开始使用
自凝材料,取得材料特性上的突破。
03:13
that are self-curing自凝,
and we could have amazing惊人 properties性能.
54
181398
4644
如果我们能成功模仿好莱坞,
03:18
So if we could pull this off,
imitate模拟 Hollywood好莱坞,
55
186042
4109
我们就可以真正解决3D制造问题。
03:22
we could in fact事实 address地址 3D manufacturing制造业.
56
190151
2761
我们的方法是使用高分子化学领域中的
03:26
Our approach途径 is to use
some standard标准 knowledge知识
57
194702
3251
03:29
in polymer聚合物 chemistry化学
58
197953
2600
常识性知识,
03:32
to harness马具 light and oxygen
to grow增长 parts部分 continuously一直.
59
200553
6599
通过控制光和氧气来进行无间断制造。
03:39
Light and oxygen work in different不同 ways方法.
60
207152
2947
光和氧气的作用不同。
03:42
Light can take a resin树脂
and convert兑换 it to a solid固体,
61
210099
3042
光可以将液态树脂转换成固体,
03:45
can convert兑换 a liquid液体 to a solid固体.
62
213141
2154
即把液体转换为固体。
03:47
Oxygen inhibits抑制 that process处理.
63
215295
3534
氧气则可抑制这一过程。
03:50
So light and oxygen
are polar极性 opposites对立 from one another另一个
64
218829
3251
所以从化学角度看,
光和氧气的作用彼此对立,
03:54
from a chemical化学 point of view视图,
65
222080
2508
03:56
and if we can control控制 spatially空间地
the light and oxygen,
66
224588
3413
我们要是能立体地控制光和氧气,
04:00
we could control控制 this process处理.
67
228001
1947
我们就可以控制制作过程。
04:02
And we refer参考 to this as CLIP.
[Continuous连续 Liquid液体 Interface接口 Production生产.]
68
230288
3451
我们将这个过程称为
CLIP(无间断液态界面印制法)。
04:05
It has three functional实用 components组件.
69
233739
1876
CLIP有三个功能组件。
第一个是用于存放液体的容器,
04:08
One, it has a reservoir
that holds持有 the puddle水坑,
70
236465
3861
04:12
just like the T-T-1000.
71
240326
1879
就像液态金属机器人T-1000。
04:14
At the bottom底部 of the reservoir
is a special特别 window窗口.
72
242205
2416
容器的底部有一个特殊窗口。
我等下会谈到。
04:16
I'll come back to that.
73
244621
1491
04:18
In addition加成, it has a stage阶段
that will lower降低 into the puddle水坑
74
246112
3780
组件二是一个平台,可下降至容器,
04:21
and pull the object目的 out of the liquid液体.
75
249892
2589
把物体从溶液中径直拉出。
04:24
The third第三 component零件
is a digital数字 light projection投影 system系统
76
252481
3804
第三部分是数字光投影系统,
04:28
underneath the reservoir,
77
256285
2020
位于容器的下方,
04:30
illuminating照明 with light
in the ultraviolet紫外线 region地区.
78
258305
3273
可提供紫外光区域的照明。
04:34
Now, the key is that this window窗口
in the bottom底部 of this reservoir,
79
262048
3223
关键就在于容器底部的窗口,
04:37
it's a composite综合,
it's a very special特别 window窗口.
80
265271
2879
这是一个复合体,
一个非常特殊的窗口
04:40
It's not only transparent透明 to light
but it's permeable透水 to oxygen.
81
268150
3646
不仅透光,而且透氧。
04:43
It's got characteristics特点
like a contact联系 lens镜片.
82
271796
2659
性质与隐形眼镜相似。
04:47
So we can see how the process处理 works作品.
83
275435
2281
这里可以看到这个过程是如何进行的。
04:49
You can start开始 to see that
as you lower降低 a stage阶段 in there,
84
277716
3414
大家可以看到,
当架台降低到那里,
04:53
in a traditional传统 process处理,
with an oxygen-impermeable不透氧 window窗口,
85
281130
4179
传统制造使用不透氧窗,
04:57
you make a two-dimensional二维 pattern模式
86
285309
1839
可以制造出二维图案,
05:00
and you end结束 up gluing胶合 that onto the window窗口
with a traditional传统 window窗口,
87
288008
3362
并最终用传统的不透气窗口
将图案粘合到窗口上,
05:03
and so in order订购 to introduce介绍
the next下一个 layer, you have to separate分离 it,
88
291370
3552
因此,要形成下一层,
你必须将其分开,
05:06
introduce介绍 new resin树脂, reposition复位 it,
89
294922
3529
重新添加树脂、重新定位,
05:10
and do this process处理 over and over again.
90
298451
2459
并重复完成这个过程。
但用我们的特殊窗口,
05:13
But with our very special特别 window窗口,
91
301400
1834
05:15
what we're able能够 to do is,
with oxygen coming未来 through通过 the bottom底部
92
303234
3329
我们可以让氧气从底部进入,
05:18
as light hits点击 it,
93
306563
1253
当光线击中氧气,
05:21
that oxygen inhibits抑制 the reaction反应,
94
309256
2670
氧气就会抑制反应,
05:23
and we form形成 a dead zone.
95
311926
2624
形成一个无感区。
05:26
This dead zone is on the order订购
of tens of microns微米 thick,
96
314550
4319
无感区大约有几十微米厚,
05:30
so that's two or three diameters直径
of a red blood血液 cell细胞,
97
318869
3227
大约是红细胞直径的两三倍,
位于窗口接口处依然可以保持液体状,
05:34
right at the window窗口 interface接口
that remains遗迹 a liquid液体,
98
322096
2531
05:36
and we pull this object目的 up,
99
324627
1950
然后我们把这物体拉出,
05:38
and as we talked about in a Science科学 paper,
100
326577
2392
正如我们在《科学》杂志中介绍的,
05:40
as we change更改 the oxygen content内容,
we can change更改 the dead zone thickness厚度.
101
328969
4713
我们只要改变氧含量,
就可以改变无感区的厚度。
05:45
And so we have a number of key variables变量
that we control控制: oxygen content内容,
102
333682
3692
因此我们控制了一些关键变量:
氧含量、
05:49
the light, the light intensity强度,
the dose剂量 to cure治愈,
103
337374
3065
光、光的强度、凝剂剂量、
05:52
the viscosity粘性, the geometry几何,
104
340439
1962
粘度、形状结构。
05:54
and we use very sophisticated复杂的 software软件
to control控制 this process处理.
105
342401
3416
我们用非常精密的软件
来控制这个过程。
得出的成果是相当惊人的。
05:58
The result结果 is pretty漂亮 staggering踉跄.
106
346697
2763
06:01
It's 25 to 100 times faster更快
than traditional传统 3D printers打印机,
107
349460
3736
与传统的3D打印机相比,
这要快25到100倍,
这是划时代的变革。
06:06
which哪一个 is game-changing改变游戏规则.
108
354336
1834
06:08
In addition加成, as our ability能力
to deliver交付 liquid液体 to that interface接口,
109
356170
4336
另外,随着控制接口
液体调节的能力提升,
06:12
we can go 1,000 times faster更快 I believe,
110
360506
3740
我相信打印速度可以再快1000倍,
06:16
and that in fact事实 opens打开 up the opportunity机会
for generating发电 a lot of heat,
111
364246
3557
而这同时开启获得大量热量的机会,
06:19
and as a chemical化学 engineer工程师,
I get very excited兴奋 at heat transfer转让
112
367803
4063
而作为一名化学工程师,
我热衷于热量的转化,
06:23
and the idea理念 that we might威力 one day
have water-cooled水冷 3D printers打印机,
113
371866
4179
未来也许会出现水冷式3D打印机,
06:28
because they're going so fast快速.
114
376045
2392
因为打印的速度太快了。
06:30
In addition加成, because we're growing生长 things,
we eliminate消除 the layers,
115
378437
4063
另外,因为我们生长式的制造方式,
摒弃了传统的积层制造,
06:34
and the parts部分 are monolithic单片.
116
382500
1974
部件的整体性得到提升,
06:36
You don't see the surface表面 structure结构体.
117
384474
2090
你看不到表层到结构。
可以得到分子级的平滑表面。
06:38
You have molecularly分子 smooth光滑 surfaces.
118
386564
2493
06:41
And the mechanical机械 properties性能
of most parts部分 made制作 in a 3D printer打印机
119
389057
4240
3D打印的大部分部件
并不受欢迎,
这是因为层式结构导致其机械特性
06:45
are notorious臭名昭著 for having properties性能
that depend依靠 on the orientation方向
120
393297
4296
取决于你打印时的方向和定位。
06:49
with which哪一个 how you printed印刷的 it,
because of the layer-like层状 structure结构体.
121
397593
3761
但当你通过生长式的方式打印,
06:53
But when you grow增长 objects对象 like this,
122
401354
2345
06:55
the properties性能 are invariant不变
with the print打印 direction方向.
123
403699
3669
物体的特性不会因打印方向而变。
06:59
These look like injection-molded注射成型 parts部分,
124
407368
2949
这些看起来更像浇筑零件,
07:02
which哪一个 is very different不同
than traditional传统 3D manufacturing制造业.
125
410317
3412
与传统的3D制造大不一样。
07:05
In addition加成, we're able能够 to throw
126
413729
3530
此外,我们能够利用
整本高分子化学课本的知识,
07:09
the entire整个 polymer聚合物
chemistry化学 textbook教科书 at this,
127
417259
3576
设计出合适的化学材料,
来制造你真正在一个3D打印零件中
07:12
and we're able能够 to design设计 chemistries化学品
that can give rise上升 to the properties性能
128
420835
3991
07:16
you really want in a 3D-printedd-印刷 object目的.
129
424826
3042
所期待的特性。
07:19
(Applause掌声)
130
427868
1337
(掌声)
07:21
There it is. That's great.
131
429205
3234
做好了,非常棒!
07:26
You always take the risk风险 that something
like this won't惯于 work onstage在舞台上, right?
132
434049
3578
在台上做这样的事总会担心它不成功,
对吧?
但是我们的材料有强大的机械特性。
07:30
But we can have materials物料
with great mechanical机械 properties性能.
133
438177
2879
07:33
For the first time, we can have elastomers弹性体
134
441056
2438
这是第一次,我们可以制作高弹性
07:35
that are high elasticity弹性
or high dampening阻尼.
135
443494
2461
或高阻尼系数的弹性体。
07:37
Think about vibration振动 control控制
or great sneakers球鞋, for example.
136
445955
3413
试想用它们进行振动控制
或者制作优质运动鞋。
我们可以制造出超高强度材料,
07:41
We can make materials物料
that have incredible难以置信 strength强度,
137
449368
2610
07:44
high strength-to-weight的强度 - 重量 ratio,
really strong强大 materials物料,
138
452828
3576
具有高强度重量比,
真正的超高强度材料,
07:48
really great elastomers弹性体,
139
456404
2113
真正超弹力材料,
07:50
so throw that in the audience听众 there.
140
458517
2725
那么我抛给在场的观众感受一下。
07:53
So great material材料 properties性能.
141
461242
2636
这些都是伟大的材料特性。
07:55
And so the opportunity机会 now,
if you actually其实 make a part部分
142
463878
3415
眼前的机遇就是:如果制造出的成果
07:59
that has the properties性能
to be a final最后 part部分,
143
467293
3680
可以成为最终成品,
08:02
and you do it in game-changing改变游戏规则 speeds速度,
144
470973
3100
又能以行业变革的速度进行,
08:06
you can actually其实 transform转变 manufacturing制造业.
145
474073
2787
那就可以真正改变制造业的面貌。
08:08
Right now, in manufacturing制造业,
what happens发生 is,
146
476860
2856
目前在制造业中,数字化制造领域
正在应用的就是所谓的“数字线”。
08:11
the so-called所谓 digital数字 thread线
in digital数字 manufacturing制造业.
147
479716
2962
08:14
We go from a CADCAD drawing画画, a design设计,
to a prototype原型 to manufacturing制造业.
148
482678
5039
我们从CAD绘图、设计,到原型,再到制造。
08:19
Often经常, the digital数字 thread线 is broken破碎
right at prototype原型,
149
487717
2723
经常会发生数字线生产在
原型制造这一环节卡壳,
08:22
because you can't go
all the way to manufacturing制造业
150
490440
2432
因为无法直接生产制造,
08:24
because most parts部分 don't have
the properties性能 to be a final最后 part部分.
151
492872
3715
因为大部分部件不具备
成为最终产品的特性。
08:28
We now can connect the digital数字 thread线
152
496587
2391
现在我们可以把数字化线的
每个环节串联起来
08:30
all the way from design设计
to prototyping原型 to manufacturing制造业,
153
498978
4249
从设计、原型设计一直到制造,
08:35
and that opportunity机会
really opens打开 up all sorts排序 of things,
154
503227
2949
这一机遇真正打开了
制造各样物品的可能性,
08:38
from better fuel-efficient省油 cars汽车
dealing交易 with great lattice格子 properties性能
155
506176
4953
例如可以通过使用高强度重量比的
网格型材料,
08:43
with high strength-to-weight的强度 - 重量 ratio,
156
511129
1951
新的涡轮叶片,以及其他很多
08:45
new turbine涡轮 blades叶片,
all sorts排序 of wonderful精彩 things.
157
513080
3428
性能优越的零件来降低汽车的油耗。
想想看,如果你在急救中需要一个支架,
08:49
Think about if you need a stent支架
in an emergency situation情况,
158
517468
5155
08:54
instead代替 of the doctor医生 pulling off
a stent支架 out of the shelf
159
522623
3970
相比医生从架子上拿一个
08:58
that was just standard标准 sizes大小,
160
526593
2229
标准尺寸的支架而言,
09:00
having a stent支架 that's designed设计
for you, for your own拥有 anatomy解剖学
161
528822
4156
一个符合你自身结构,
09:04
with your own拥有 tributaries支流,
162
532978
1811
为你量身定做的支架,
09:06
printed印刷的 in an emergency situation情况
in real真实 time out of the properties性能
163
534789
3249
在紧急情况下可随时打印获得,
09:10
such这样 that the stent支架 could go away
after 18 months个月: really-game真的游戏 changing改变.
164
538038
3439
而支架可以在18个月后消失:
革命性的改变。
09:13
Or digital数字 dentistry牙科, and making制造
these kinds of structures结构
165
541477
4156
或者数字化牙科:
就在你躺在牙医椅子上时
09:17
even while you're in the dentist牙医 chair椅子.
166
545633
3181
就可以做出这类结构。
09:20
And look at the structures结构
that my students学生们 are making制造
167
548814
2716
看看我的学生
09:23
at the University大学 of North Carolina卡罗来纳州.
168
551530
1974
在北卡罗莱纳大学所完成的成果。
09:25
These are amazing惊人 microscale微量 structures结构.
169
553504
2809
这些是令人惊叹的微型结构。
09:28
You know, the world世界 is really good
at nano-fabrication纳米制造.
170
556313
2996
众所周知,现今世界的
纳米制造技术已经非常尖端了。
09:31
Moore's摩尔定律 Law has driven驱动 things
from 10 microns微米 and below下面.
171
559309
4290
摩尔定律已经让我们可以制作10微米
甚至更小的物体,
09:35
We're really good at that,
172
563599
1602
我们这方面做得很好,
09:37
but it's actually其实 very hard to make things
from 10 microns微米 to 1,000 microns微米,
173
565201
4040
但在10到1000微米的范围内
制造物体是非常困难的,
09:41
the mesoscale尺度.
174
569241
2020
在这个中等尺度范围。
09:43
And subtractive消减 techniques技术
from the silicon industry行业
175
571261
2833
而硅产业的消减技术
09:46
can't do that very well.
176
574094
1416
无法胜任此工作。
他们不能理想地蚀刻芯片。
09:47
They can't etch蚀刻 wafers晶圆 that well.
177
575510
1649
09:49
But this process处理 is so gentle温和,
178
577159
1950
但我们的制造过程相当精细,
09:51
we can grow增长 these objects对象
up from the bottom底部
179
579109
2485
可以从底部向上制作物体,
09:53
using运用 additive添加剂 manufacturing制造业
180
581594
1996
利用添加制造技术,
09:55
and make amazing惊人 things
in tens of seconds,
181
583590
2253
在几十秒内达到惊人的效果,
这将带来新的传感技术、
09:57
opening开盘 up new sensor传感器 technologies技术,
182
585843
2089
09:59
new drug药物 delivery交货 techniques技术,
183
587932
2485
新的药品传输技术、
10:02
new lab-on-a-chip实验室上的单芯片 applications应用,
really game-changing改变游戏规则 stuff东东.
184
590417
3732
崭新的”芯片实验室“应用
等真正的革命性产物。
10:07
So the opportunity机会 of making制造
a part部分 in real真实 time
185
595149
4834
因此这种让零件制造成为成品的
10:11
that has the properties性能 to be a final最后 part部分
186
599983
2833
实时制造技术,
10:14
really opens打开 up 3D manufacturing制造业,
187
602816
2976
真正打开了3D制造业的大门,
10:17
and for us, this is very exciting扣人心弦,
because this really is owning拥有
188
605792
3200
对我们来说,这非常令人振奋,
10:20
the intersection路口 between之间 hardware硬件,
software软件 and molecular分子 science科学,
189
608992
6597
因为这真正实现了硬件、
软件和分子科学之间的交互,
10:27
and I can't wait to see what designers设计师
and engineers工程师 around the world世界
190
615589
4166
我迫不及待地想看到
世界各地的设计师和工程师们
10:31
are going to be able能够 to do
with this great tool工具.
191
619755
2274
会用这伟大的工具做出什么成果。
10:34
Thanks谢谢 for listening.
192
622499
2119
感谢各位的聆听。
10:36
(Applause掌声)
193
624618
5109
(掌声)
Translated by Xingyi Ouyang 歐陽杏儀
Reviewed by Ning Du

▲Back to top

ABOUT THE SPEAKER
Joseph DeSimone - Chemist, inventor
The CEO of Carbon3D, Joseph DeSimone has made breakthrough contributions to the field of 3D printing.

Why you should listen

Joseph DeSimone is a scholar, inventor and serial entrepreneur. A longtime professor at UNC-Chapel Hill, he's taken leave to become the CEO at Carbon3D, the Silicon Valley 3D printing company he co-founded in 2013. DeSimone, an innovative polymer chemist, has made breakthrough contributions in fluoropolymer synthesis, colloid science, nano-biomaterials, green chemistry and most recently 3D printing. His company's Continuous Liquid Interface Production (CLIP) suggests a breakthrough way to make 3D parts.

Read the paper in Science. Authors: John R. Tumbleston, David Shirvanyants, , Nikita Ermoshkin, Rima Janusziewicz, Ashley R. Johnson, David Kelly, Kai Chen, Robert Pinschmidt, Jason P. Rolland, Alexander Ermoshkin, Edward T. Samulsk.

DeSimone is one of less than twenty individuals who have been elected to all three branches of the National Academies: Institute of Medicine (2014), National Academy of Sciences (2012) and the National Academy of Engineering (2005), and in 2008 he won the $500,000 Lemelson-MIT Prize for Invention and Innovation. He's the co-founder of several companies, including Micell Technologies, Bioabsorbable Vascular Solutions, Liquidia Technologies and Carbon3D.

More profile about the speaker
Joseph DeSimone | Speaker | TED.com