English-Video.net comment policy

The comment field is common to all languages

Let's write in your language and use "Google Translate" together

Please refer to informative community guidelines on TED.com

TEDGlobal 2013

Molly Stevens: A new way to grow bone

茉莉史蒂芬: 培育骨骼的新方法

Filmed
Views 1,201,390

要怎样才能大量再生骨骼呢?典型的骨骼重生——是从病人的臀部取出骨骼,然后移植到身上损坏的骨头处——这种方法有一定的局限性且术后的几年内都会产生剧烈的疼痛。在这个演讲里,茉莉•史蒂芬介绍了一种新的干细胞应用方法,能带动骨骼自身的能力去再生和制造大量的骨骼组织,并且大大减少疼痛。

- Biomaterials researcher
Molly Stevens studies and creates new biomaterials that could be used to detect disease and repair bones and human tissue. Full bio

As humans人类, it's in our nature性质
作为人类,我们本能地希望
00:12
to want to improve提高 our health健康
and minimize最小化 our suffering痛苦.
使自己更健康,少受痛楚。
00:14
Whatever随你 life throws at us,
无论我们在生活中遭遇到什么,
00:17
whether是否 it's cancer癌症, diabetes糖尿病, heart disease疾病,
不管是癌症,糖尿病,心脏病,
00:19
or even broken破碎 bones骨头, we want to try and get better.
或是骨折,我们都想尽快康复。
00:21
Now I'm head of a biomaterials生物材料 lab实验室,
我是一间生物材料实验室的负责人,
00:24
and I'm really fascinated入迷 by the way that humans人类
而且我对历史上人类
00:27
have used materials物料 in really creative创作的 ways方法
别出心裁地将不同的材料
00:30
in the body身体 over time.
使用在人体上十分感兴趣。
00:32
Take, for example, this beautiful美丽 blue蓝色 nacre珍珠母 shell贝壳.
举个例子,这个漂亮的蓝色珍珠贝壳,
00:35
This was actually其实 used by the Mayans玛雅人
它其实是被玛雅人
00:38
as an artificial人造 tooth齿 replacement替代.
当作人造牙齿来使用的。
00:40
We're not quite相当 sure why they did it.
我们还不是很确定他们为什么要这么做。
00:44
It's hard. It's durable耐用.
这东西坚硬,耐用,
00:45
But it also had other very nice不错 properties性能.
但它也具备其他优秀的特征。
00:48
In fact事实, when they put it into the jawbone颚骨,
实际上 ,当他们把它放进颚骨时,
00:52
it could integrate整合 into the jaw,
它可以和颚骨结合在一起。
00:54
and we know now with very sophisticated复杂的
现在,在精密的成像技术的帮助下
00:57
imaging成像 technologies技术
我们明白了,
00:59
that part部分 of that integration积分 comes from the fact事实
之所以能结合,部分原因是因为
01:01
that this material材料 is designed设计
这种材料的设计
01:03
in a very specific具体 way, has a beautiful美丽 chemistry化学,
有非常独特的地方,它有良好的化学性质,
01:05
has a beautiful美丽 architecture建筑.
和良好的构造。
01:08
And I think in many许多 ways方法 we can sort分类 of think
而且我觉得,在很多方面,
01:10
of the use of the blue蓝色 nacre珍珠母 shell贝壳 and the Mayans玛雅人
我们可以把蓝色珍珠贝壳和玛雅人这个例子,
01:12
as the first real真实 application应用
当作蓝牙技术的
01:15
of the bluetooth蓝牙 technology技术.
首个真正应用。
01:16
(Laughter笑声)
(笑声)
01:19
But if we move移动 on and think throughout始终 history历史
如果我们沿着时间的发展来思考整个历史进程中
01:20
how people have used different不同
materials物料 in the body身体,
人类是如何在人体上运用不同材料的,
01:25
very often经常 it's been physicians医师
我们会发现,频频出现的
01:28
that have been quite相当 creative创作的.
是那些极具创意的医生,
01:29
They've他们已经 taken采取 things off the shelf.
他们都是就地取材。
01:31
One of my favorite喜爱 examples例子
我最喜欢的一个例子,
01:33
is that of Sir先生 Harold哈罗德 Ridley雷德利,
是关于哈罗德•里德利爵士的。
01:35
who was a famous著名 ophthalmologist眼科医生,
他是一位著名的眼科医生,
01:38
or at least最小 became成为 a famous著名 ophthalmologist眼科医生.
至少是成为了著名的眼科医生。
01:40
And during World世界 War战争 IIII, what he would see
在二战期间,他注意到
01:42
would be pilots飞行员 coming未来 back from their missions任务,
执行完任务回来的飞行员的眼睛里,
01:44
and he noticed注意到 that within their eyes眼睛
执行完任务回来的飞行员的眼睛里,
01:47
they had shards碎片 of small bits of material材料
有一些细小的碎片藏在里面,
01:49
lodged提交 within the eye,
有一些细小的碎片藏在里面,
01:52
but the very interesting有趣 thing about it
但比较有趣的是,
01:53
was that material材料, actually其实, wasn't causing造成
这些碎片材料
01:55
any inflammatory发炎的 response响应.
并没有引发任何炎症。
01:57
So he looked看着 into this, and he figured想通 out
经过调查他发现,
01:59
that actually其实 that material材料 was little shards碎片 of plastic塑料
这是一些塑料碎片,
02:02
that were coming未来 from the canopy华盖 of the Spitfires喷火.
是喷火式战斗机座舱罩的一部分。
02:04
And this led him to propose提出 that material材料
由此他提出把这种材料
02:07
as a new material材料 for intraocular lenses镜头.
当作人工晶体的新材料。
02:10
It's called PMMAPMMA, and it's now used
它叫做PMMA(聚甲基丙烯酸甲酯),
02:12
in millions百万 of people every一切 year
如今它每年都造福数百万人民,
02:14
and helps帮助 in preventing防止 cataracts白内障.
帮助预防白内障。
02:16
And that example, I think, is a really nice不错 one,
我觉得这是一个很好的例子,
02:19
because it helps帮助 remind提醒 us that in the early days,
因为它提醒我们,
02:21
people often经常 chose选择 materials物料
在过去人们之所以选择某种材料
02:24
because they were bioinert生物惰性.
是因为它是生物惰性材料,
02:26
Their very purpose目的 was to
perform演出 a mechanical机械 function功能.
他们只是想发挥它的机械性能。
02:28
You'd put them in the body身体
你把它植入体内,
02:31
and you wouldn't不会 get an adverse不利的 response响应.
不会有不良反应。
02:33
And what I want to show显示 you is that
我要给你们看的是,
02:35
in regenerative再生 medicine医学,
在再生医学领域,
02:36
we've我们已经 really shifted away from that idea理念
我们的观念已经发生改变,
02:38
of taking服用 a bioinert生物惰性 material材料.
不再从生物惰性材料上取材,
02:40
We're actually其实 actively积极地 looking for materials物料
我们现在在积极寻找新的材料,
02:41
that will be bioactive生物活性, that will interact相互作用 with the body身体,
能和人体相互作用的生物活性材料,
02:44
and that furthermore此外 we can put in the body身体,
并且我们能将之植入体内,
02:47
they'll他们会 have their function功能,
它们发挥作用之后,
02:49
and then they'll他们会 dissolve溶解 away over time.
随着时间的推移它们会自动溶解。
02:51
If we look at this schematic概要,
我们看下这个示意图,
02:55
this is showing展示 you what we think of
它给我们展示了
02:57
as the typical典型 tissue-engineering组织工程 approach途径.
典型的组织工程学方法。
02:59
We have cells细胞 there, typically一般 from the patient患者.
我们从病人身上提取细胞,
03:01
We can put those onto a material材料,
把它们放在某种材料上,
03:04
and we can make that material材料
very complex复杂 if we want to,
如果需要,我们还可以把材料弄得复杂一点,
03:05
and we can then grow增长 that up in the lab实验室
然后我们就能在实验室里进行培养,
03:08
or we can put it straight直行 back into the patient患者.
或者就直接放回病人身体内。
03:10
And this is an approach途径 that's
used all over the world世界,
这种方法在全世界普遍使用,
03:13
including包含 in our lab实验室.
包括我们实验室。
03:15
But one of the things that's really important重要
我们在想到干细胞的时候,
03:19
when we're thinking思维 about stem cells细胞
有非常重要的一点,
03:21
is that obviously明显 stem cells细胞
can be many许多 different不同 things,
就是干细胞显然可以变成很多不同的东西,
03:23
and they want to be many许多 different不同 things,
并且也希望它们能长成不同的东西,
03:26
and so we want to make sure that the environment环境
所以我们要确保放干细胞的环境中
03:28
we put them into has enough足够 information信息
有足够多的信息,
03:29
so that they can become成为 the right sort分类
这样它们才能发育成我们想要的
03:32
of specialist专家 tissue组织.
那种特定的组织。
03:34
And if we think about the different不同 types类型 of tissues组织
如果我们想想那些
03:36
that people are looking at regenerating再生
在全世界不同的实验室里,
03:40
all over the world世界, in all the
different不同 labs实验室 in the world世界,
人们正试图再生的各种不同类型的组织,
03:42
there's pretty漂亮 much every一切 tissue组织 you can think of.
基本就包括了差不多你能想到的所有组织。
03:44
And actually其实, the structure结构体 of those tissues组织
事实上,那些组织的结构
03:47
is quite相当 different不同, and it's going to really depend依靠
都挺不同的,要怎样去再造组织,
03:48
on whether是否 your patient患者 has any underlying底层 disease疾病,
绝大部分要取决于,
03:51
other conditions条件, in terms条款 of how
你的病人是否有一些潜在疾病,
03:53
you're going to regenerate再生 your tissue组织,
以及一些其他的条件。
03:56
and you're going to need to think about the materials物料
你还需要非常认真地考虑
03:58
you're going to use really carefully小心,
要使用什么材料,
04:00
their biochemistry生物化学, their mechanics机械学,
考虑它们的生化特征,它们的结构,
04:02
and many许多 other properties性能 as well.
和其他的一些特性。
04:04
Our tissues组织 all have very
different不同 abilities能力 to regenerate再生,
我们身体里的组织都具有非常不同的再生能力。
04:08
and here we see poor较差的 Prometheus普罗米修斯,
我们来看看可怜的普罗米修斯
(希腊神话中人名,为人类盗火种甘受罚),
04:11
who made制作 a rather tricky狡猾 career事业 choice选择
他做了一个比较苦逼的职业抉择,
04:13
and was punished处罚 by the Greek希腊语 gods.
然后就被希腊的神给惩罚了。
04:16
He was tied to a rock, and an eagle would come
他被绑到一块石头上,然后每天都会有一只老鹰
04:19
every一切 day to eat his liver.
飞过来啄食他的肝。
04:21
But of course课程 his liver would regenerate再生 every一切 day,
当然,他的肝每天都会再生,
04:23
and so day after day he was punished处罚
所以他就这样日复一日,年复一年,
04:25
for eternity永恒 by the gods.
永远不停地接受神的惩罚。
04:27
And liver will regenerate再生 in this very nice不错 way,
肝会这样完美地再生,
04:33
but actually其实 if we think of other tissues组织,
但如果我们想一下别的组织,
04:37
like cartilage软骨, for example,
比如像软骨,
04:39
even the simplest简单 nick缺口 and you're going to find it
哪怕是最简单的小切口,
04:40
really difficult to regenerate再生 your cartilage软骨.
软骨都很难再生出来。
04:42
So it's going to be very different不同 from tissue组织 to tissue组织.
所以,再生能力是因组织而异的,
04:45
Now, bone is somewhere某处 in between之间,
骨头呢,介于两者之间。
04:48
and this is one of the tissues组织
that we work on a lot in our lab实验室.
我们实验室在骨头上做了大量的工作。
04:51
And bone is actually其实 quite相当 good at repairing修复.
骨头的修复能力其实相当不错,
04:54
It has to be. We've我们已经 probably大概 all had fractures骨折
它必须得是这样的。
04:56
at some point or other.
我们可能都有过骨折的经历吧。
04:58
And one of the ways方法 that you can think
而要想修复骨折,
04:59
about repairing修复 your fracture断裂
一个方法
05:02
is this procedure程序 here, called
an iliac crest波峰 harvest收成.
就叫髂骨移植法。
05:03
And what the surgeon外科医生 might威力 do
外科医生可能
05:06
is take some bone from your iliac crest波峰,
会从你的髂骨那取些骨头,
05:08
which哪一个 is just here,
就在这儿,
05:11
and then transplant移植 that
somewhere某处 else其他 in the body身体.
然后移植到身体的别的部位。
05:12
And it actually其实 works作品 really well,
这个方法其实很有效,
05:15
because it's your own拥有 bone,
因为它是你自己身上的骨头,
05:16
and it's well vascularized血管,
而且有充分的血管浸润,
05:18
which哪一个 means手段 it's got a really good blood血液 supply供应.
也就是说供血良好。
05:19
But the problem问题 is, there's
only so much you can take,
但问题就是,你能用得就只有那么多,
05:22
and also when you do that operation手术,
而且当你在进行这项手术时,
05:24
your patients耐心 might威力 actually其实 have significant重大 pain疼痛
你的病人可能会在缺位那里产生极大的疼痛,
05:27
in that defect缺陷 site现场 even two
years年份 after the operation手术.
哪怕手术两年后还会感到疼痛。
05:30
So what we were thinking思维 is,
所以我们想的是,
05:33
there's a tremendous巨大 need
for bone repair修理, of course课程,
骨头修复肯定有大量的需求,
05:35
but this iliac crest-type波峰型 approach途径
但这种髂骨方法
05:38
really has a lot of limitations限制 to it,
有太多的局限性,
05:41
and could we perhaps也许 recreate重建
那么我们是否能
05:43
the generation of bone within the body身体
在体内重新制造出所需的骨头,
05:45
on demand需求 and then be able能够 to transplant移植 it
然后将之进行移植,
05:47
without these very, very painful痛苦 aftereffects后遗症
而又不像髂骨方法那样
05:51
that you would have with the iliac crest波峰 harvest收成?
产生痛苦的后果?
05:56
And so this is what we did, and the way we did it
我们是这样做的,
05:59
was by coming未来 back to this typical典型 tissue-engineering组织工程 approach途径
我们的方法就是回到组织工程学,
06:02
but actually其实 thinking思维 about it rather differently不同.
但是要用不同的思维方式。
06:05
And we simplified it a lot,
而且我们将之大大简化,
06:08
so we got rid摆脱 of a lot of these steps脚步.
我们去掉了很多步骤,
06:10
We got rid摆脱 of the need to
harvest收成 cells细胞 from the patient患者,
我们减掉了从病人身上提取细胞这一步骤,
06:12
we got rid摆脱 of the need to put
in really fancy幻想 chemistries化学品,
我们减掉了使用华丽的化学反应的必要性,
06:14
and we got rid摆脱 of the need
我们还去掉了
06:17
to culture文化 these scaffolds支架 in the lab实验室.
在实验室里搭建这些支架的必要性。
06:19
And what we really focused重点 on
所以我们真正关注的
06:21
was our material材料 system系统 and making制造 it quite相当 simple简单,
是我们的材料系统,并尽量简化,
06:24
but because we used it in a really clever聪明 way,
但因为我们用了巧妙的方法,
06:27
we were able能够 to generate生成 enormous巨大 amounts of bone
所以我们就能非常大量地生产骨骼。
06:30
using运用 this approach途径.
所以我们就能非常大量地生产骨骼。
06:32
So we were using运用 the body身体
所以我们是利用身体,
06:34
as really the catalyst催化剂 to help us
把它当作催化剂来使用,
06:36
to make lots of new bone.
以此产生新骨骼。
06:38
And it's an approach途径 that we call
这就是我们所称的
06:40
the in vivo体内 bioreactor生物反应器, and we were able能够 to make
体内生物反应器,
06:42
enormous巨大 amounts of bone using运用 this approach途径.
我们可以用这种方法大量制造骨骼。
06:45
And I'll talk you through通过 this.
我详细跟你们讲下。
06:47
So what we do is,
所以我们所做的就是,
06:49
in humans人类, we all have a layer of stem cells细胞
在体内我们的长骨外面,
06:51
on the outside of our long bones骨头.
都有一层干细胞,
06:53
That layer is called the periosteum骨膜.
这一层叫做骨膜。
06:55
And that layer is actually其实 normally一般
这层骨膜通常来说
06:57
very, very tightly紧紧 bound to the underlying底层 bone,
和在它下面的骨骼是紧密相连的,
06:59
and it's got stem cells细胞 in it.
而且里面含有干细胞,
07:02
Those stem cells细胞 are really important重要
这些干细胞在胚胎发育时期
07:03
in the embryo when it develops发展,
有着非常重要的作用,
07:05
and they also sort分类 of wake唤醒 up if you have a fracture断裂
而且当你不慎骨折的时候,
07:07
to help you with repairing修复 the bone.
它们会被激活以修复骨骼。
07:09
So we take that periosteum骨膜 layer
所以我们要利用骨膜层,
07:12
and we developed发达 a way to inject注入 underneath it
我们想办法在它下面注入一种液体,
07:14
a liquid液体 that then, within 30 seconds,
然后在30秒内
07:17
would turn into quite相当 a rigid死板 gel凝胶
会变成一种硬胶。
07:20
and can actually其实 lift电梯 the
periosteum骨膜 away from the bone.
这样就将骨膜提起,与骨骼分离,
07:21
So it creates创建, in essence本质, an artificial人造 cavity空穴
所以本质上它制造了一个人造空腔,
07:25
that is right next下一个 to both the bone
就在骨骼
07:28
but also this really rich丰富 layer of stem cells细胞.
和干细胞层中间。
07:32
And we go in through通过 a pinhole针孔 incision切口
我们通过一个针孔切口进入,
07:36
so that no other cells细胞 from the body身体 can get in,
这样身上别的细胞就进不去,
07:37
and what happens发生 is that that
artificial人造 in vivo体内 bioreactor生物反应器 cavity空穴
这个人造的体内生物反应腔
07:40
can then lead to the proliferation增殖 of these stem cells细胞,
能促进这些干细胞的增殖,
07:45
and they can form形成 lots of new tissue组织,
而它们就能形成许多新的组织。
07:48
and then over time, you can harvest收成 that tissue组织
过一段时间后,就可以收取这些组织,
07:50
and use it elsewhere别处 in the body身体.
并用到身上其他地方去。
07:52
This is a histology组织学 slide滑动
这张组织学切片显示了
07:55
of what we see when we do that,
我们采用这种方法之后所看到的样子。
07:57
and essentially实质上 what we see
我们主要看到的
07:59
is very large amounts of bone.
是大量的骨骼,
08:02
So in this picture图片, you can see the middle中间 of the leg,
在这张图中,你们可以看到腿中间的部位,
08:03
so the bone marrow骨髓,
也就是骨髓,
08:06
then you can see the original原版的 bone,
还可以看到原来的骨骼,
08:07
and you can see where that original原版的 bone finishes饰面,
以及原来的骨骼结束的位置,
08:09
and just to the left of that is the new bone
在左边的就是新生的骨骼,
08:12
that's grown长大的 within that bioreactor生物反应器 cavity空穴,
就是在生物反应腔生长的,
08:15
and you can actually其实 make it even larger.
事实上你还可以让它生长得更大。
08:17
And that demarcation划界 that you can see
另外你们所看到的,
08:19
between之间 the original原版的 bone and the new bone
在原骨骼和新骨骼之间的分界线,
08:22
acts行为 as a very slight轻微 point of weakness弱点,
算是比较薄弱的地方,
08:24
so actually其实 now the surgeon外科医生 can come along沿,
所以现在外科医生就可以来
08:26
can harvest收成 away that new bone,
把新骨骼取走,
08:28
and the periosteum骨膜 can grow增长 back,
而骨膜能长回来,
08:30
so you're left with the leg
所以你的腿
08:32
in the same相同 sort分类 of state
也会恢复原貌,
08:34
as if you hadn't有没有 operated操作 on it in the first place地点.
就像什么都没发生过一样。
08:36
So it's very, very low in terms条款 of after-pain后疼痛
所以相比髂骨移植法,
08:38
compared相比 to an iliac crest波峰 harvest收成.
这种方法大大减少了术后疼痛,
08:42
And you can grow增长 different不同 amounts of bone
而且你注入多少胶进去,
08:45
depending根据 on how much gel凝胶 you put in there,
就能生长出多少骨骼来,
08:48
so it really is an on demand需求 sort分类 of procedure程序.
所以这种方法算是一种按需供应的方法。
08:50
Now, at the time that we did this,
当我们在做这个项目的时候,
08:53
this received收到 a lot of attention注意 in the press,
媒体给予我们很多的关注,
08:55
because it was a really nice不错 way
因为这是一种十分理想的
08:58
of generating发电 new bone,
产生新骨骼的方法。
09:01
and we got many许多, many许多 contacts往来
也有很多很多不同的人和我们联系,
09:02
from different不同 people that
were interested有兴趣 in using运用 this.
对使用这种方法十分感兴趣。
09:04
And I'm just going to tell you,
我在这里跟你们说吧
09:07
sometimes有时 those contacts往来 are very strange奇怪,
有时这些和我们联系的人很奇怪,
09:09
slightly unexpected意外,
有点出乎意料,
09:12
and the very most interesting有趣,
最有趣的,
09:13
let me put it that way, contact联系 that I had,
我这么说吧,和我联系的人,
09:16
was actually其实 from a team球队 of American美国 footballers足球运动员
是一个来自美国的橄榄球队,
09:19
that all wanted to have double-thickness双厚度 skulls头骨
他们希望他们的脑袋里
09:22
made制作 on their head.
头盖骨能长到双倍的厚度。
09:25
And so you do get these kinds of contacts往来,
所以是会有这样的人和你联系的。
09:30
and of course课程, being存在 British英国的
当然作为一个英国人,
09:32
and also growing生长 up in France法国,
又自小在法国长大,
09:35
I tend趋向 to be very blunt,
我是比较坦率的,
09:37
and so I had to explain说明 to them very nicely很好
我不得不委婉地解释说,
09:39
that in their particular特定 case案件,
像他们这种情况,
09:41
there probably大概 wasn't that much in there
那里本身大概
09:42
to protect保护 in the first place地点.
也没多少可保护的。
09:44
(Laughter笑声)
(笑声)
09:47
(Applause掌声)
(掌声)
09:49
So this was our approach途径,
所以这就是我们的方法。
09:50
and it was simple简单 materials物料,
材料很简单,
09:52
but we thought about it carefully小心.
但我们是经过精心思考的。
09:54
And actually其实 we know that those cells细胞
而且我们也知道体内的这些细胞,
09:56
in the body身体, in the embryo, as they develop发展
在胚胎时期,当他们生长的时候,
09:57
can form形成 a different不同 kind of tissue组织, cartilage软骨,
还能形成另一种不同的组织,就是软骨,
09:59
and so we developed发达 a gel凝胶 that was slightly different不同
所以我们又制造了一种性质和原先不大一样的胶体,
10:03
in nature性质 and slightly different不同 chemistry化学,
化学效应也稍有不同,
10:05
put it in there, and we were able能够 to get
把它们注入,
10:08
100 percent百分 cartilage软骨 instead代替.
我们就能得到百分之百的软骨。
10:10
And this approach途径 works作品 really well, I think,
我觉得这个方法
10:12
for pre-planned预先计划 procedures程序,
对于预先计划好的手术来说效果是很不错的,
10:14
but it's something you do have to pre-plan预案.
但你必须得预先计划好。
10:16
So for other kinds of operations操作,
所以对其他类型的手术来说,
10:19
there's definitely无疑 a need for other
采用支架方法
10:22
scaffold-based支架为主 approaches方法.
是非常有必要的。
10:23
And when you think about designing设计
当你在思考
10:26
those other scaffolds支架, actually其实,
设计那些支架的时候,
10:28
you need a really multi-disciplinary多学科 team球队.
你需要一个多学科的团队。
10:30
And so our team球队 has chemists化学家,
所以我们的团队里有化学家,
10:32
it has cell细胞 biologists生物学家, surgeons外科医生, physicists物理学家 even,
还有细胞生物学家,外科医生,甚至还有物理学家,
10:34
and those people all come together一起
这些人都走到了一起,
10:37
and we think really hard about
designing设计 the materials物料.
而且我们竭尽心思设计那些材料。
10:39
But we want to make them have enough足够 information信息
我们希望它们能提供足够多的信息,
10:42
that we can get the cells细胞 to do what we want,
让我们能使细胞按我们的要求行动,
10:45
but not be so complex复杂 as to make it difficult
但又不能太复杂,
10:47
to get to clinic诊所.
以免在临床上难以实践。
10:49
And so one of the things we think about a lot
所以我们经常思考的事项之一,
10:51
is really trying to understand理解
就是试图去明白
10:54
the structure结构体 of the tissues组织 in the body身体.
人体内组织的结构。
10:55
And so if we think of bone,
当我们一想到骨骼时,
10:58
obviously明显 my own拥有 favorite喜爱 tissue组织,
显然这是我最喜欢的组织,
11:00
we zoom放大 in, we can see,
我们把它放大,就能看到,
11:02
even if you don't know anything
about bone structure结构体,
就算你一点都不知道骨骼结构也能看到,
11:04
it's beautifully精美 organized有组织的,
really beautifully精美 organized有组织的.
它结构很优美,真的很美,
11:06
We've我们已经 lots of blood血液 vessels船只 in there.
那里还有很多血管。
11:08
And if we zoom放大 in again, we see that the cells细胞
我们再放大,就能看到
11:10
are actually其实 surrounded包围 by a 3D matrix矩阵
这些细胞被纳米级别的纤维
11:12
of nano-scale纳米级 fibers纤维, and they give a lot
像3D矩阵一样环绕着,
11:15
of information信息 to the cells细胞.
他们为细胞提供很多信息。
11:17
And if we zoom放大 in again,
如果我们再放大,
11:20
actually其实 in the case案件 of bone, the matrix矩阵
对骨骼来说,
11:21
around the cells细胞 is beautifully精美 organized有组织的
细胞周围的基质也形成纳米大小的优美结构。
11:23
at the nano纳米 scale规模, and it's a hybrid混合动力 material材料
而且它还是一种杂合性的材料,
11:26
that's part部分 organic有机, part部分 inorganic无机.
就是部分有机,部分无机。
11:28
And that's led to a whole整个 field领域, really,
这为我们开拓了一个新的领域,真的,
11:31
that has looked看着 at developing发展 materials物料
就是试图开发出
11:33
that have this hybrid混合动力 kind of structure结构体.
具有这种杂合性结构的材料。
11:35
And so I'm showing展示 here just two examples例子
我在这里给大家看两个例子,
11:38
where we've我们已经 made制作 some materials物料
that have that sort分类 of structure结构体,
就是我们制造的有这种结构的物质,
11:41
and you can really tailor裁缝 it.
而且是可以量身定做的。
11:44
You can see here a very squishy糊状的 one
这边你可以看到软软的这一种,
11:46
and now a material材料 that's also
this hybrid混合动力 sort分类 of material材料
而这边是一种杂合性材料做成的,
11:48
but actually其实 has remarkable卓越 toughness韧性,
它的坚韧性非常显著,
11:52
and it's no longer brittle.
而且它一点也不脆。
11:54
And an inorganic无机 material材料
would normally一般 be really brittle,
无机材料通常都比较脆,
11:55
and you wouldn't不会 be able能够 to have
你就没有办法
11:58
that sort分类 of strength强度 and toughness韧性 in it.
得到这种强度和韧性的。
11:59
One other thing I want to quickly很快 mention提到 is that
另外一个我想很快地提一下,
12:01
many许多 of the scaffolds支架 we make
are porous多孔, and they have to be,
就是我们做的很多支架都是多孔的,这是必须的,
12:04
because you want blood血液 vessels船只 to grow增长 in there.
因为你得让血管在里面发育生长。
12:07
But the pores毛孔 are actually其实 oftentimes通常情况下
但是这些孔很多时候
12:09
much bigger than the cells细胞,
却比细胞要大得多,
12:11
and so even though虽然 it's 3D,
所以即使它是3D的,
12:12
the cell细胞 might威力 see it more
as a slightly curved弯曲 surface表面,
对于细胞来说可能会是一个弯曲的表面,
12:14
and that's a little bit unnatural不自然.
而这是有点违背自然规律的。
12:17
And so one of the things you can think about doing
所以我们能做的
12:19
is actually其实 making制造 scaffolds支架
with slightly different不同 dimensions尺寸
就是做一些稍微不同维度的支架,
12:21
that might威力 be able能够 to surround环绕 your cells细胞 in 3D
这样就能3D地包围细胞,
12:24
and give them a little bit more information信息.
让他们能拥有多一点信息。
12:27
And there's a lot of work going
on in both of these areas.
在这两个领域里,都有很多工作在进行着。
12:29
Now finally最后, I just want to talk a little bit about
最后,我还想说说
12:33
applying应用 this sort分类 of thing to cardiovascular心血管 disease疾病,
在心血管疾病方面运用这种技术。
12:37
because this is a really big clinical临床 problem问题.
因为这是临床上一个比较大的问题。
12:40
And one of the things that we know is that,
而我们所知的一件事就是,
12:43
unfortunately不幸, if you have a heart attack攻击,
如果你不幸心脏病突发,
12:46
then that tissue组织 can start开始 to die,
那么那里的组织会开始死亡,
12:49
and your outcome结果 may可能 not be very good over time.
时间拖得越久,后果可能越严重。
12:52
And it would be really great, actually其实,
如果我们能够,
12:55
if we could stop that dead tissue组织
让死亡的组织不再继续死下去,
12:57
either from dying垂死 or help it to regenerate再生.
或使它再生,那将很了不起。
12:59
And there's lots and lots of stem
cell细胞 trials试验 going on worldwide全世界,
现在在全世界范围内有很多这样的干细胞实验,
13:03
and they use many许多 different不同 types类型 of cells细胞,
他们使用很多不同种类的细胞,
13:06
but one common共同 theme主题 that seems似乎 to be coming未来 out
但似乎得到的都是同一个结果,
13:08
is that actually其实, very often经常, those cells细胞 will die
就是这些细胞,一旦你将之移植
13:11
once一旦 you've implanted植入 them.
通常都会死掉。
13:14
And you can either put them into the heart
你可以把他们移植到心脏
13:15
or into the blood血液 system系统,
或血液中,
13:17
but either way, we don't seem似乎 to be able能够
但不管哪一种方式,我们似乎都没法
13:19
to get quite相当 the right number of cells细胞
使足够数量的细胞
13:22
getting得到 to the location位置 we want them to
到我们想要的地方去,
13:24
and being存在 able能够 to deliver交付 the sort分类 of beautiful美丽
然后进行细胞再生,
13:26
cell细胞 regeneration再生 that we would like to have
那样我们才能
13:30
to get good clinical临床 outcomes结果.
得到较好的临床效果。
13:33
And so some of the things that we're thinking思维 of,
所以我们在思考的一些问题,
13:36
and many许多 other people in the field领域 are thinking思维 of,
而且很多同行的人也在思考的一些问题,
13:38
are actually其实 developing发展 materials物料 for that.
就是为此制造材料。
13:42
But there's a difference区别 here.
但这里有不同之处,
13:45
We still need chemistry化学, we still need mechanics机械学,
我们仍须化学和机械学,
13:46
we still need really interesting有趣 topography地形,
我们还需要有趣的拓扑学,
13:48
and we still need really interesting有趣
ways方法 to surround环绕 the cells细胞.
我们也需要有新意的方式来环绕细胞。
13:51
But now, the cells细胞 also
但是这些细胞
13:54
would probably大概 quite相当 like a material材料
可能也很像
13:56
that's going to be able能够 to be conductive导电,
一种具有传导性的材料,
13:58
because the cells细胞 themselves他们自己 will respond响应 very well
因为细胞自身会很好地反馈
14:00
and will actually其实 conduct进行 signals信号
between之间 themselves他们自己.
而且在彼此之间传导信息。
14:05
You can see them now
你在这能看到
14:08
beating跳动 synchronously同步 on these materials物料,
细胞在这些材料上同步地跳动着,
14:10
and that's a very, very exciting扣人心弦 development发展
这是非常非常振奋人心的进展。
14:12
that's going on.
这是非常非常振奋人心的进展。
14:15
So just to wrap up, I'd like to actually其实 say that
总结一下,我想说,
14:17
being存在 able能够 to work in this sort分类 of field领域,
能够在这样的领域工作,
14:22
all of us that work in this field领域
对于我们所有在这个领域工作的人而言,
14:24
that's not only super-exciting超激 science科学,
这不仅是超级让人兴奋的科学,
14:26
but also has the potential潜在
它还有潜力
14:28
to impact碰撞 on patients耐心,
对病人产生影响,
14:30
however然而 big or small they are,
不论这影响是大是小,
14:32
is really a great privilege特权.
对我们都是一种荣幸。
14:35
And so for that, I'd like to thank all of you as well.
为此我也要对你们说声感谢。
14:36
Thank you.
谢谢你们。
14:39
(Applause掌声)
(掌声)
14:41
Translated by Lee Li
Reviewed by Rong Han

▲Back to top

About the speaker:

Molly Stevens - Biomaterials researcher
Molly Stevens studies and creates new biomaterials that could be used to detect disease and repair bones and human tissue.

Why you should listen

At Imperial College London, Molly Stevens heads a highly multidisciplinary research group that designs bioactive materials for regenerative medicine and biosensing. It's fundamental science with an eye to practical applications as healthcare products.

Among the products from her lab: an engineered bone, cardiac tissue suitable for use in transplants, and disease-sensing nanoparticle aggregates that change color in the presence of even tiny quantities of cancer-related enzymes, making early sensing possible. As Stevens told The Lancet: "It's right down at the nanoscience level. It's really exciting stuff, but it actually results in something very tangibly useful."

More profile about the speaker
Molly Stevens | Speaker | TED.com