ABOUT THE SPEAKER
Rachel Armstrong - Applied scientist, innovator
TED Fellow Rachel Armstrong is a sustainability innovator who creates new materials that possess some of the properties of living systems, and can be manipulated to "grow" architecture.

Why you should listen

Rachel Armstrong innovates and designs sustainable solutions for the built and natural environment using advanced new technologies such as, Synthetic Biology – the rational engineering of living systems - and smart chemistry. Her research prompts a reevaluation of how we think about our homes and cities and raises questions about sustainable development of the built environment. She creates open innovation platforms for academia and industry to address environmental challenges such as carbon capture & recycling, smart ‘living’ materials and sustainable design.

Her award winning research underpins her bold approach to the way that she challenges perceptions, presumptions and established principles related to scientific concepts and the building blocks of life and society. She embodies and promotes new transferrable ways of thinking ‘outside of the box’ and enables others to also develop innovative environmental solutions. Her innovative approaches are outlined in her forthcoming TED Book on Living Architecture.

Watch Rachel Armstrong's TED Fellows talk, "Creating Carbon-Negative Architecture" >>

More profile about the speaker
Rachel Armstrong | Speaker | TED.com
TEDGlobal 2009

Rachel Armstrong: Architecture that repairs itself?

瑞秋·阿姆斯特朗:自我修复的建筑学

Filmed:
1,344,794 views

意大利的威尼斯正在下沉中。为了拯救它,瑞秋·阿姆斯特朗认为采用传统材料的建筑学已经不再使用,我们需要能自我修复的建筑学。她提出了一种可以自我修复和估碳拟生材料。
- Applied scientist, innovator
TED Fellow Rachel Armstrong is a sustainability innovator who creates new materials that possess some of the properties of living systems, and can be manipulated to "grow" architecture. Full bio

Double-click the English transcript below to play the video.

00:15
All buildings房屋 today今天 have something in common共同.
0
0
4000
现在,所有的建筑都有一个共同点
00:19
They're made制作 using运用 Victorian维多利亚时代 technologies技术.
1
4000
3000
就是都使用维多利亚时代的技术
00:22
This involves涉及 blueprints蓝图,
2
7000
3000
包括蓝图、
00:25
industrial产业 manufacturing制造业
3
10000
2000
工业制造、
00:27
and construction施工 using运用 teams球队 of workers工人.
4
12000
3000
还有需要一群工人来建造
00:30
All of this effort功夫 results结果 in an inert惰性的 object目的.
5
15000
3000
这些都导致了一个消极的结果:
00:33
And that means手段 that there is a one-way单程 transfer转让 of energy能源
6
18000
3000
这是一个单向的能源转换,
00:36
from our environment环境 into our homes家园 and cities城市.
7
21000
4000
既从大自然到我们的城市和家中
00:40
This is not sustainable可持续发展.
8
25000
2000
所以这不是可持续发展的。
00:42
I believe that the only way that it is possible可能 for us
9
27000
3000
我认为,建造可持续发展的家园和城市
00:45
to construct构造 genuinely真正的 sustainable可持续发展 homes家园 and cities城市
10
30000
3000
的唯一方法,
00:48
is by connecting them to nature性质,
11
33000
2000
就是把他们和自然联系到一起
00:50
not insulating绝缘 them from it.
12
35000
3000
而不是分离开来
00:53
Now, in order订购 to do this, we need the right kind of language语言.
13
38000
4000
现在,为了做到这,我们需要一种正确的语言和自然“对话”。
00:57
Living活的 systems系统 are in constant不变 conversation会话
14
42000
2000
生命系统和大自然得以永久的沟通
00:59
with the natural自然 world世界,
15
44000
2000
在自然界之中
01:01
through通过 sets of chemical化学 reactions反应 called metabolism代谢.
16
46000
4000
通过一系列“新陈代谢”式的化学反应。
01:05
And this is the conversion转变 of one group of substances物质
17
50000
3000
这种“对话”是一些物质被转换成另一种
01:08
into another另一个, either through通过
18
53000
2000
这种“对话”是一些物质被转换成另一种
01:10
the production生产 or the absorption吸收 of energy能源.
19
55000
3000
通过生产或者吸收能量。
01:13
And this is the way in which哪一个 living活的 materials物料
20
58000
2000
这是一种将当地资源以可持续的方式转变为生活资料的方法
01:15
make the most of their local本地 resources资源
21
60000
3000
这是一种将当地资源以可持续的方式转变为生活资料的方法
01:18
in a sustainable可持续发展 way.
22
63000
3000
这是一种将当地资源以可持续的方式转变为生活资料的方法
01:21
So, I'm interested有兴趣 in the use of
23
66000
2000
所以,我对把可以进行新陈代谢的物质
01:23
metabolic新陈代谢 materials物料 for the practice实践 of architecture建筑.
24
68000
5000
运用到建筑当中很感兴趣
01:28
But they don't exist存在. So I'm having to make them.
25
73000
2000
但这种材料并不存在,我要创造它们
01:30
I'm working加工 with architect建筑师 Neil尼尔 Spiller斯皮勒
26
75000
2000
我现在在Bartlett建筑学院
01:32
at the Bartlett巴特利特 School学校 of Architecture建筑,
27
77000
2000
和Neil Spiller建筑师一起合作。
01:34
and we're collaborating合作 with international国际 scientists科学家们
28
79000
2000
同时,我们还和国际科学家一起合作
01:36
in order订购 to generate生成 these new materials物料
29
81000
2000
用自下而上的方法
01:38
from a bottom底部 up approach途径.
30
83000
2000
来产生这种新物质。£
01:40
That means手段 we're generating发电 them from scratch.
31
85000
2000
也就是说,我们要凭空创造。
01:42
One of our collaborators合作者 is chemist化学家 Martin马丁 HanczycHanczyc,
32
87000
4000
化学家Martin Hanczyc是我们的一位合作者
01:46
and he's really interested有兴趣 in the transition过渡 from
33
91000
3000
他对处于惰性和活性之间的物质
01:49
inert惰性的 to living活的 matter.
34
94000
2000
很有兴趣。
01:51
Now, that's exactly究竟 the kind of process处理 that I'm interested有兴趣 in,
35
96000
3000
那也正是我们在研究可持续发展物质中
01:54
when we're thinking思维 about sustainable可持续发展 materials物料.
36
99000
2000
让我感兴趣的。
01:56
So, Martin马丁, he works作品 with a system系统 called the protocell原始细胞.
37
101000
5000
Martin用一个叫做“原生细胞”的系统工作
02:01
Now all this is -- and it's magic魔法 --
38
106000
3000
这和魔术一样,看这个
02:04
is a little fatty脂肪 bag. And it's got a chemical化学 battery电池 in it.
39
109000
3000
是一团脂肪。里面有一个化学电池,
02:07
And it has no DNA脱氧核糖核酸.
40
112000
3000
但没有DNA。
02:10
This little bag is able能够 to conduct进行 itself本身
41
115000
2000
这东西的行为方式
02:12
in a way that can only be described描述 as living活的.
42
117000
3000
只有生命体才有
02:15
It is able能够 to move移动 around its environment环境.
43
120000
3000
它可以在自己的环境中移动;
02:18
It can follow跟随 chemical化学 gradients梯度.
44
123000
2000
被化学浓度高的地方吸引;
02:20
It can undergo经历 complex复杂 reactions反应,
45
125000
3000
它们能承受复杂的环境变化。
02:23
some of which哪一个 are happily高高兴兴 architectural建筑的.
46
128000
4000
它们是一些快乐的建筑师~
02:27
So here we are. These are protocells原始细胞,
47
132000
2000
看这些原生细胞
02:29
patterning图案 their environment环境.
48
134000
2000
能模仿周围的环境
02:31
We don't know how they do that yet然而.
49
136000
3000
我们还不知道它们是怎么做到这些的
02:34
Here, this is a protocell原始细胞, and it's vigorously大力 shedding脱落 this skin皮肤.
50
139000
4000
看,这也是个原生细胞,它正在努力的脱离表皮,
02:38
Now, this looks容貌 like a chemical化学 kind of birth分娩.
51
143000
2000
这有点像化学上的分娩,
02:40
This is a violent暴力 process处理.
52
145000
3000
是一个艰难的过程
02:43
Here, we've我们已经 got a protocell原始细胞 to extract提取 carbon dioxide二氧化碳
53
148000
3000
这是一个能从大气中分离二氧化碳的原生细胞
02:46
out of the atmosphere大气层
54
151000
2000
这是一个能从大气中分离二氧化碳的原生细胞
02:48
and turn it into carbonate碳酸盐.
55
153000
2000
并转换为碳酸盐
02:50
And that's the shell贝壳 around that globular球形 fat脂肪.
56
155000
2000
就是那些球状物边上的硬壳
02:52
They are quite相当 brittle. So you've only got a part部分 of one there.
57
157000
3000
它们很脆,我们只能弄到一部分
02:55
So what we're trying to do is, we're trying to push these technologies技术
58
160000
3000
所以,我们所作的是试着把这些技术
02:58
towards creating创建 bottom-up自下而上 construction施工 approaches方法
59
163000
2000
用来创造一种自下而上的
03:00
for architecture建筑,
60
165000
2000
建筑方法
03:02
which哪一个 contrast对比 the current当前, Victorian维多利亚时代, top-down自顶向下 methods方法
61
167000
3000
有别于现在乃至维多利亚时代沿用的自上而下的方法
03:05
which哪一个 impose强加 structure结构体 upon matter.
62
170000
3000
这可以加强材料的结构.
03:08
That can't be energetically起劲 sensible明智.
63
173000
3000
它们更先进
03:11
So, bottom-up自下而上 materials物料
64
176000
2000
这种材料
03:13
actually其实 exist存在 today今天.
65
178000
2000
其实早就有了。
03:15
They've他们已经 been in use, in architecture建筑, since以来 ancient times.
66
180000
3000
我们的祖先早就把它们运用在建筑上了。
03:18
If you walk步行 around the city of Oxford牛津, where we are today今天,
67
183000
3000
如果你走在如今的牛津城,
03:21
and have a look at the brickwork砖砌,
68
186000
2000
观察一下那些砖块——
03:23
which哪一个 I've enjoyed享受 doing in the last couple一对 of days,
69
188000
2000
这些天我很喜欢这样——
03:25
you'll你会 actually其实 see that a lot of it is made制作 of limestone石灰石.
70
190000
2000
你能看见很多都是用石灰石做的。
03:27
And if you look even closer接近,
71
192000
2000
如果你更仔细的观察的话,
03:29
you'll你会 see, in that limestone石灰石, there are little shells炮弹
72
194000
2000
你可以看见那些石头里有些小贝壳
03:31
and little skeletons骷髅 that are piled upon each other.
73
196000
3000
和小骨头互相堆积。
03:34
And then they are fossilized化石 over millions百万 of years年份.
74
199000
3000
它们被石化了数百万年,
03:37
Now a block of limestone石灰石, in itself本身,
75
202000
2000
现在做成了一块砖头
03:39
isn't particularly尤其 that interesting有趣.
76
204000
3000
很有意思吧。
03:42
It looks容貌 beautiful美丽.
77
207000
2000
这看起来很漂亮
03:44
But imagine想像 what the properties性能 of this limestone石灰石 block might威力 be
78
209000
4000
但是想象一下这石头会怎么样
03:48
if the surfaces were actually其实
79
213000
2000
如果它的表面可以
03:50
in conversation会话 with the atmosphere大气层.
80
215000
3000
一直和大气“对话”的话。
03:53
Maybe they could extract提取 carbon dioxide二氧化碳.
81
218000
3000
也许它们可以提取二氧化碳。
03:56
Would it give this block of limestone石灰石 new properties性能?
82
221000
3000
这会给这石灰砖新的特性吗?
03:59
Well, most likely容易 it would. It might威力 be able能够 to grow增长.
83
224000
3000
最有可能的就是它可以生长。
04:02
It might威力 be able能够 to self-repair自我修复, and even respond响应
84
227000
2000
也许可以自我修复,
04:04
to dramatic戏剧性 changes变化
85
229000
2000
甚至对所处环境更复杂的变化做出反应
04:06
in the immediate即时 environment环境.
86
231000
2000
甚至对所处环境更复杂的变化做出反应
04:08
So, architects建筑师 are never happy快乐
87
233000
3000
而建筑学不会对
04:11
with just one block of an interesting有趣 material材料.
88
236000
3000
就一块特殊材料的转头感到满足
04:14
They think big. Okay?
89
239000
2000
他要考虑的更多,对吗?
04:16
So when we think about scaling缩放 up metabolic新陈代谢 materials物料,
90
241000
3000
所以当我们想考虑更多的代谢材料时,
04:19
we can start开始 thinking思维 about ecological生态 interventions干预措施
91
244000
2000
我们可以从生态干预入手,
04:21
like repair修理 of atolls环礁,
92
246000
2000
像修复珊瑚礁一样,
04:23
or reclamation开垦 of parts部分 of a city
93
248000
3000
或者是填埋那些
04:26
that are damaged破损 by water.
94
251000
2000
城市被水损害的部分
04:28
So, one of these examples例子
95
253000
2000
这些例子
04:30
would of course课程 be the historic历史性 city of Venice威尼斯.
96
255000
3000
都像威尼斯一样。
04:33
Now, Venice威尼斯, as you know, has a tempestuous汹涌 relationship关系 with the sea,
97
258000
4000
众所周知,威尼斯和海洋有着密切的关系,
04:37
and is built内置 upon wooden piles.
98
262000
2000
而且它建造在木桩上。
04:39
So we've我们已经 devised设计 a way by which哪一个 it may可能 be possible可能
99
264000
3000
所以,我们发明了一种
04:42
for the protocell原始细胞 technology技术 that we're working加工 with
100
267000
2000
可以让原生细胞技术
04:44
to sustainably可持续 reclaim回收 Venice威尼斯.
101
269000
3000
可持续的改变威尼斯的方法
04:47
And architect建筑师 Christian基督教 Kerrigan克里根
102
272000
2000
建筑师Christian Kerrigan
04:49
has come up with a series系列 of designs设计 that show显示 us
103
274000
2000
想出了一系列的设计
04:51
how it may可能 be possible可能 to actually其实 grow增长 a limestone石灰石 reef
104
276000
3000
可以让城市下面的石灰石生长
04:54
underneath the city.
105
279000
2000
可以让城市下面的石灰石生长
04:56
So, here is the technology技术 we have today今天.
106
281000
3000
这就是我们现在有的技术
04:59
This is our protocell原始细胞 technology技术,
107
284000
2000
这是我们的“原生细胞”技术
05:01
effectively有效 making制造 a shell贝壳, like its limestone石灰石 forefathers祖先,
108
286000
4000
有效的生产出一种外壳,就像最早的石灰石一样,
05:05
and depositing沉积 it in a very complex复杂 environment环境,
109
290000
3000
并且沉积在非常复杂的环境当中
05:08
against反对 natural自然 materials物料.
110
293000
2000
并可以对抗自然材料
05:10
We're looking at crystal水晶 lattices格子 to see the bonding结合 process处理 in this.
111
295000
3000
现在,我们正在研究这其中晶胞的键合作用
05:13
Now, this is the very interesting有趣 part部分.
112
298000
2000
这是非常有意思的一个部分。
05:15
We don't just want limestone石灰石 dumped everywhere到处 in all the pretty漂亮 canals运河.
113
300000
3000
我们不想让这些石灰石随便在这些美丽的运河中“排泄”
05:18
What we need it to do is to be
114
303000
2000
我们需要它们在指定的地方生长
05:20
creatively创造性 crafted精雕细琢 around the wooden piles.
115
305000
4000
围绕着木桩生长
05:24
So, you can see from these diagrams that the protocell原始细胞 is actually其实
116
309000
2000
你看图中这些原生细胞
05:26
moving移动 away from the light,
117
311000
2000
正在远离光线
05:28
toward the dark黑暗 foundations基金会.
118
313000
2000
而朝着暗处运动
05:30
We've我们已经 observed观察到的 this in the laboratory实验室.
119
315000
2000
我们在实验室里观察到这一现象
05:32
The protocells原始细胞 can actually其实 move移动 away from the light.
120
317000
3000
它们可以远离光线
05:35
They can actually其实 also move移动 towards the light. You have to just choose选择 your species种类.
121
320000
3000
它们也可以朝光运动,你只要选择它们的种类就行
05:38
So that these don't just exist存在 as one entity实体,
122
323000
2000
所以,它们不是以一个实体存在的,
05:40
we kind of chemically化学 engineer工程师 them.
123
325000
3000
我们用化学工程改造它们
05:43
And so here the protocells原始细胞 are depositing沉积 their limestone石灰石
124
328000
3000
现在看到的这些细胞正在修复石灰石
05:46
very specifically特别, around the foundations基金会 of Venice威尼斯,
125
331000
3000
非常有目的性的,包围威尼斯的根基,
05:49
effectively有效 petrifying僵化 it.
126
334000
2000
有效的固定它。
05:51
Now, this isn't going to happen发生 tomorrow明天. It's going to take a while.
127
336000
4000
不过这些不是马上就能实现的,需要一些时间
05:55
It's going to take years年份 of tuning调音 and monitoring监控 this technology技术
128
340000
4000
这需要几年的时间来改进和监控这项技术
05:59
in order订购 for us to become成为 ready准备
129
344000
2000
为了可以在
06:01
to test测试 it out in a case-by-case逐案 basis基础
130
346000
2000
一个案例一个案例测试的基础上
06:03
on the most damaged破损 and stressed强调 buildings房屋 within the city of Venice威尼斯.
131
348000
3000
在威尼斯损伤最大的建筑上
06:06
But gradually逐渐, as the buildings房屋 are repaired修复,
132
351000
3000
但渐渐的,当这些建筑被修复时,
06:09
we will see the accretion吸积 of a limestone石灰石 reef beneath下面 the city.
133
354000
3000
我们将看到一个城市的下方逐渐堆积的石灰礁。
06:12
An accretion吸积 itself本身 is a huge巨大 sink水槽 of carbon dioxide二氧化碳.
134
357000
4000
自我堆积是一个很大的二氧化碳沉积过程
06:16
Also it will attract吸引 the local本地 marine海洋 ecology生态,
135
361000
3000
这也会影响到当地的海洋生态系统,
06:19
who will find their own拥有 ecological生态 niches壁龛 within this architecture建筑.
136
364000
4000
它会找到自己在这个生态系统中的位置。
06:23
So, this is really interesting有趣. Now we have an architecture建筑
137
368000
3000
这真是很有趣,现在我们有一种
06:26
that connects所连接 a city to the natural自然 world世界
138
371000
3000
可以把城市与自然连接在一起的建筑技术
06:29
in a very direct直接 and immediate即时 way.
139
374000
2000
通过一种直接有效的方式
06:31
But perhaps也许 the most exciting扣人心弦 thing about it
140
376000
3000
不过也学最让人兴奋的是
06:34
is that the driver司机 of this technology技术 is available可得到 everywhere到处.
141
379000
3000
这种技术在任何地方都有用。
06:37
This is terrestrial陆生 chemistry化学. We've我们已经 all got it,
142
382000
3000
这是一种生态化学,我们全都掌握了。
06:40
which哪一个 means手段 that this technology技术 is just as appropriate适当
143
385000
3000
这意味着这种技术
06:43
for developing发展 countries国家 as it is
144
388000
2000
对发达国家和发展中国家
06:45
for First World世界 countries国家.
145
390000
2000
都适合。
06:47
So, in summary概要, I'm generating发电 metabolic新陈代谢 materials物料
146
392000
3000
总结一下。我正在研究的代谢材料
06:50
as a counterpoise平衡 to Victorian维多利亚时代 technologies技术,
147
395000
3000
是作为一种对维多利亚时代技术不足的弥补
06:53
and building建造 architectures架构 from a bottom-up自下而上 approach途径.
148
398000
3000
并在建筑学中采用自下而上的方法。
06:56
Secondly其次, these metabolic新陈代谢 materials物料
149
401000
2000
还有,这些代谢材料
06:58
have some of the properties性能 of living活的 systems系统,
150
403000
2000
有一些生命系统的特点,
07:00
which哪一个 means手段 they can perform演出 in similar类似 ways方法.
151
405000
3000
这意味着它们能与和生命相似的方式工作。
07:03
They can expect期望 to have a lot of forms形式 and functions功能
152
408000
3000
随着建筑学的进步,
07:06
within the practice实践 of architecture建筑.
153
411000
2000
它们很有用武之地。
07:08
And finally最后, an observer观察者 in the future未来
154
413000
3000
最后,如果一个未来的人
07:11
marveling惊叹 at a beautiful美丽 structure结构体 in the environment环境
155
416000
3000
来看这些美丽的的建筑时
07:14
may可能 find it almost几乎 impossible不可能 to tell
156
419000
3000
他可能分别不出
07:17
whether是否 this structure结构体
157
422000
2000
这些建筑
07:19
has been created创建 by a natural自然 process处理
158
424000
2000
是大自然的杰作呢
07:21
or an artificial人造 one.
159
426000
2000
还是人类的作品
07:23
Thank you.
160
428000
2000
谢谢
07:25
(Applause掌声)
161
430000
4000
掌声
Translated by Yang Jacky
Reviewed by Yin`ai Sun

▲Back to top

ABOUT THE SPEAKER
Rachel Armstrong - Applied scientist, innovator
TED Fellow Rachel Armstrong is a sustainability innovator who creates new materials that possess some of the properties of living systems, and can be manipulated to "grow" architecture.

Why you should listen

Rachel Armstrong innovates and designs sustainable solutions for the built and natural environment using advanced new technologies such as, Synthetic Biology – the rational engineering of living systems - and smart chemistry. Her research prompts a reevaluation of how we think about our homes and cities and raises questions about sustainable development of the built environment. She creates open innovation platforms for academia and industry to address environmental challenges such as carbon capture & recycling, smart ‘living’ materials and sustainable design.

Her award winning research underpins her bold approach to the way that she challenges perceptions, presumptions and established principles related to scientific concepts and the building blocks of life and society. She embodies and promotes new transferrable ways of thinking ‘outside of the box’ and enables others to also develop innovative environmental solutions. Her innovative approaches are outlined in her forthcoming TED Book on Living Architecture.

Watch Rachel Armstrong's TED Fellows talk, "Creating Carbon-Negative Architecture" >>

More profile about the speaker
Rachel Armstrong | Speaker | TED.com