ABOUT THE SPEAKER
Conrad Wolfram - Mathematician
Conrad Wolfram runs the worldwide arm of Wolfram Research, the mathematical lab behind the cutting-edge knowledge engine Wolfram Alpha.

Why you should listen

Conrad Wolfram is the strategic director of Wolfram Research, where his job, in a nutshell, is understanding and finding new uses for the Mathematica technology. Wolfram is especially passionate about finding uses for Mathematica outside of pure computation, using it as a development platform for products that help communicate big ideas. The Demonstrations tool, for instance, makes a compelling case for never writing out another equation -- instead displaying data in interactive, graphical form.

Wolfram's work points up the changing nature of math in the past 30 years, as we've moved from adding machines to calculators to sophisticated math software, allowing us to achieve ever more complex computational feats. But, Wolfram says, many schools are still focused on hand-calculating; using automation, such as a piece of software, to do math is sometimes seen as cheating. This keeps schools from spending the time they need on the new tools of science and mathematics. As they gain significance for everyday living, he suggests, we need to learn to take advantage of these tools and learn to use them young. Learn more at computerbasedmath.org.

More profile about the speaker
Conrad Wolfram | Speaker | TED.com
TEDGlobal 2010

Conrad Wolfram: Teaching kids real math with computers

Conrad Wolfram: Tju mesojme femijeve tone matematike reale duke perdorur kompjuterat.

Filmed:
1,742,493 views

Duke filluar nga raketat ne planete jashte tokesore dhe duke vazhduar tek ambjentet tregetare financiare, shumica e shkencave krijuese te njerezimit jane te bashkangjitura dhe fuqizuara nga lenda e matematikes. Atehere, pse femijet tane humbasin interesin dhe vemendjen ne shkencat e matematikes? Conrad Wolfram thote qe pjesa e matematikes qe ne shpjegojme, prillogaritjet me dore, -- nuk eshte vetem e besdizshme, por mbi te gjitha eshte e pa lidhur dhe perdorur me shkencen e matematikes reale ne kohet e sotme. Ai paraqit idete e tija themelore: Duke ju shpjeguar dhe mesuar femijeve tane matematike nepermjet shkences te programeve kompjutore.
- Mathematician
Conrad Wolfram runs the worldwide arm of Wolfram Research, the mathematical lab behind the cutting-edge knowledge engine Wolfram Alpha. Full bio

Double-click the English transcript below to play the video.

00:15
We've got a real problem with math education right now.
0
0
4000
Ne jemi ballafaquar me nje problem mese te vertete ne edukimin matematikor ne kohet e sotme.
00:19
Basically, no one's very happy.
1
4000
3000
Me nje fjale, asnje nuk eshte i kenaqur.
00:22
Those learning it
2
7000
2000
Ata qe mundohen te mesojne matematike
00:24
think it's disconnected,
3
9000
2000
jane te mendimit qe nuk ka lidhje fare me shkencat e tjera,
00:26
uninteresting and hard.
4
11000
2000
e pa interesueshme dhe teper e veshtire.
00:28
Those trying to employ them
5
13000
2000
Ata qe mundohen te punesojne matematicientet
00:30
think they don't know enough.
6
15000
2000
jane te mendimit qe nuk kane mjaft njohuri te vlershme ne matematike.
00:32
Governments realize that it's a big deal for our economies,
7
17000
3000
Te gjitha strukturate tona qeveritare po e nenkuptojne qe kjo eshte nje ceshtje thelbesore per ekonomine,
00:35
but don't know how to fix it.
8
20000
3000
por nuk jane ne dije se si mund te japin nje rrugezgjithje.
00:38
And teachers are also frustrated.
9
23000
2000
Mbi te gjitha, dhe profesoret jane teper te lodhur me kete problem.
00:40
Yet math is more important to the world
10
25000
3000
Akoma me teper, matematika eshte lenda me e rendesishme ne te gjithe boten
00:43
than at any point in human history.
11
28000
2000
me e rrendesishmja nga te gjitha ne historine e njerrezimit.
00:45
So at one end we've got falling interest
12
30000
2000
Keshtu pra, nga njerra ane ne jemi ballafaquar me nje interes te deshtuar
00:47
in education in math,
13
32000
2000
ne dhenjen e lendes te matematikes,
00:49
and at the other end we've got a more mathematical world,
14
34000
3000
dhe nga ana tjeter, ne jetojme ne nje kohe nga me te nderlikuarat me matematiken.
00:52
a more quantitative world than we ever have had.
15
37000
3000
ne nje kohe ne llogarine financiare qe nuk e kemi hasur asnjehere me perpara.
00:56
So what's the problem, why has this chasm opened up,
16
41000
2000
Atehere, cili eshte problemi, pse na ka lindur kjo pengese e madhe,
00:58
and what can we do to fix it?
17
43000
3000
dhe cfare mund te paraqitim, ne menyre qe ti japim nje rrugezgjithje?
01:01
Well actually, I think the answer
18
46000
2000
Mire atehere aktualisht, Une mendoj qe pergjigja
01:03
is staring us right in the face:
19
48000
2000
eshte perpara fytyres tone:
01:05
Use computers.
20
50000
2000
Le te perdorim kompjuterat.
01:07
I believe
21
52000
2000
Une jam i vendosur
01:09
that correctly using computers
22
54000
2000
qe ne qofte se ne perdorim kompjuterat korektesisht
01:11
is the silver bullet
23
56000
2000
do te jete me pa tjeter fisheku jone i argjente
01:13
for making math education work.
24
58000
3000
per ti dhene rrugezgjidhje problemit tone ne shkencen e matematikes.
01:16
So to explain that,
25
61000
2000
Atehere pra, per te shpjeguar kete,
01:18
let me first talk a bit about what math looks like in the real world
26
63000
3000
me lejoni te flas pak rreth lendes te matematikes, se si paraqitet tek ne, ne kete kohe
01:21
and what it looks like in education.
27
66000
2000
dhe ne te njejten gje se si paraqitet ne ambjentet akademike.
01:23
See, in the real world
28
68000
2000
Shikoni pra, ne kohet e sotme
01:25
math isn't necessarily done by mathematicians.
29
70000
3000
matematika nuk behet nga matematicientet.
01:28
It's done by geologists,
30
73000
2000
Ajo behet nga gjeologet,
01:30
engineers, biologists,
31
75000
2000
ingjinieret, biologet,
01:32
all sorts of different people --
32
77000
2000
dhe shume njerrez te ndryeshm-
01:34
modeling and simulation.
33
79000
2000
duke krijuar modele dhe duke paraqitur faktore te lidhur me matematiken.
01:36
It's actually very popular.
34
81000
2000
Eshte faktikisht shume e perhapur.
01:38
But in education it looks very different --
35
83000
3000
Por ne shkencat akademike duke komplet ndryshe--
01:41
dumbed-down problems, lots of calculating,
36
86000
2000
probleme te mbytura per dhenie te sakta ne pergjigje, duke perfshire shume llogaritje,
01:43
mostly by hand.
37
88000
2000
me dore.
01:46
Lots of things that seem simple
38
91000
2000
Shume gjera qe duken dhe jane te thjeshta
01:48
and not difficult like in the real world,
39
93000
2000
ne tregun e sotem financiar, nuk jane te veshtira pasi
01:50
except if you're learning it.
40
95000
2000
e kane mesuar.
01:53
And another thing about math:
41
98000
2000
Dhe nje gje tjeter rreth matematikes:
01:55
math sometimes looks like math --
42
100000
2000
matematika nganjehere duket si matematike--
01:57
like in this example here --
43
102000
3000
si ky shembulli ketu--
02:00
and sometimes it doesn't --
44
105000
2000
dhe nga njehere nuk krahasohet fare me matematiken--
02:02
like "Am I drunk?"
45
107000
3000
per shembull," A jam une i dehur?"
02:07
And then you get an answer that's quantitative in the modern world.
46
112000
3000
Dhe pas kesaj ju merrni nje pergjigje qe eshte llogaritare ne kohet e sotme.
02:10
You wouldn't have expected that a few years back.
47
115000
3000
Ju as mund te prisni nje gje te tille fite me perpara.
02:13
But now you can find out all about --
48
118000
3000
Por tani juve keni te gjitha pergjigjet rreth kesaj pyetje--
02:16
unfortunately, my weight is a little higher than that, but --
49
121000
3000
Fatkeqesisht, pesha ime eshte pak me e madhe sesa kjo,
02:19
all about what happens.
50
124000
2000
une jam me interesuar se cfare do te ndodhe pas kesaj.
02:21
So let's zoom out a bit and ask,
51
126000
2000
Atehere pra, let te fillojme te zgjerojme ceshtjen dhe te pyesim veten,
02:23
why are we teaching people math?
52
128000
2000
pse u shpjegojme njerzve matematike?
02:25
What's the point of teaching people math?
53
130000
3000
Cila eshte arsyeja qe ne u shpjegojme njerzve matematike?
02:28
And in particular, why are we teaching them math in general?
54
133000
3000
Dhe ne vecanerisht, pse ne vashdojme tju shpegojme matematike ne pergjithesi?
02:31
Why is it such an important part of education
55
136000
3000
Pse eshte nje aspekt shume i rendesishem ne akademite shkollore
02:34
as a sort of compulsory subject?
56
139000
2000
sidomos nje lende qe ne kembengulim kaq shume?
02:36
Well, I think there are about three reasons:
57
141000
3000
E pra, une mendoj qe ne shikojme tre arsye te pergjithshme:
02:39
technical jobs
58
144000
2000
punesimet teknike
02:41
so critical to the development of our economies,
59
146000
3000
jane me patjeter kritike ne zhvillimin e ekonomise tone
02:44
what I call "everyday living" --
60
149000
3000
ate qe une e quaj, " jetesa e perditshme"--
02:48
to function in the world today,
61
153000
2000
te funksionosh ne diten e perditshme ne kohet e sotme,
02:50
you've got to be pretty quantitative,
62
155000
2000
juve duhet te jeni shume llogaritare,
02:52
much more so than a few years ago:
63
157000
2000
akoma me shume ne krahasim me disa vite me pare:
02:54
figure out your mortgages,
64
159000
2000
se pari, llogaritja e pageses te shtepise,
02:56
being skeptical of government statistics, those kinds of things --
65
161000
3000
se dyti, dyshimi i datave statistike, gjera te kesaj natyre--
03:00
and thirdly, what I would call something like
66
165000
3000
dhe se treti, te cilin une e quaj
03:03
logical mind training, logical thinking.
67
168000
3000
trajnimin e logjikes mendore, mendimin logjik.
03:06
Over the years
68
171000
2000
Nder vitet
03:08
we've put so much in society
69
173000
2000
ne i jemi nenshtruar shume gjerave ne njerezimin tone shoqeror
03:10
into being able to process and think logically. It's part of human society.
70
175000
3000
duke u perpjekur ne procedurimin dhe menduar logjikisht. Eshte pjese e njerezimit.
03:13
It's very important to learn that
71
178000
2000
Eshte shume e rendesishme te mesojme qe
03:15
math is a great way to do that.
72
180000
2000
matematika eshte nje menyre shume e mire per te zgjeruar hapesirat e mendimeve logjike.
03:17
So let's ask another question.
73
182000
2000
Keshtu pra, le te paraqitim nje pyetje tjeter.
03:19
What is math?
74
184000
2000
C'fare eshte matematika?
03:21
What do we mean when we say we're doing math,
75
186000
2000
C'fare do te thote kur ne pergjigjemi qe po bejme matematike,
03:23
or educating people to do math?
76
188000
2000
ose te edukojme njerzit te mesojne matematike?
03:25
Well, I think it's about four steps, roughly speaking,
77
190000
3000
Pra, Une mendoj qe gjenden kater hapa ne kete moment, ndersa po bisedojme,
03:28
starting with posing the right question.
78
193000
2000
le te fillojme te paraqitim nje pyetje me te sakte.
03:30
What is it that we want to ask? What is it we're trying to find out here?
79
195000
3000
Cila eshte arsyeja qe ne duam te pyesim per dicka? Perse po perpiqemi kaq shume qe te zbulojme c'fare?
03:33
And this is the thing most screwed up in the outside world,
80
198000
2000
Dhe po ketu, ne kete moment, gjendet problemi kryesor shume i ngaterruar ne boten e jashtme,
03:35
beyond virtually any other part of doing math.
81
200000
3000
me thellesisht, virtualiteti i shpjegimit te matematikes.
03:38
People ask the wrong question,
82
203000
2000
Pra, njerezit bejne pyetjen e gabuar,
03:40
and surprisingly enough, they get the wrong answer,
83
205000
2000
dhe me habitese, njerezit marrin pergjigje te gabuar,
03:42
for that reason, if not for others.
84
207000
2000
per kete arsye, jo per te tjera.
03:44
So the next thing is take that problem
85
209000
2000
Atehere, ceshtja tjeter eshte marrja e problemit
03:46
and turn it from a real world problem
86
211000
2000
kthimi i saj ne nje problem real
03:48
into a math problem.
87
213000
2000
te lidhur me matematike.
03:50
That's stage two.
88
215000
2000
Kjo eshte faza e dyte.
03:52
Once you've done that, then there's the computation step.
89
217000
3000
Pasi ke mbaruar me kete faze, atehere vazhdon me faktoret llogaritse ne kompjuter.
03:55
Turn it from that into some answer
90
220000
2000
Po ne kete moment, juve mund te arrini te gjeni disa pergjigje
03:57
in a mathematical form.
91
222000
3000
formale matematikore.
04:00
And of course, math is very powerful at doing that.
92
225000
2000
Dhe sigurisht, matematike eshte shume e fuqishme ne kete gje.
04:02
And then finally, turn it back to the real world.
93
227000
2000
Dhe me se fundi,le te kthehemi te bota reale.
04:04
Did it answer the question?
94
229000
2000
Ne moment, pyet veten nese gjithcka qe bere, a more pergjogje te sakta qe kane kuptim ne situaten perkatse?
04:06
And also verify it -- crucial step.
95
231000
3000
Dhe perpiqu te verifikosh keto pergjigje me faktoret e dhene-- e cila eshte nje hap shume kritik dhe i rendesishem.
04:10
Now here's the crazy thing right now.
96
235000
2000
Tani, ketu eshte nje gje absurde, po tani ne kete moment.
04:12
In math education,
97
237000
2000
Ne akademite matematikore,
04:14
we're spending about perhaps 80 percent of the time
98
239000
3000
ne kalojme afersisht 80 perqind te kohes
04:17
teaching people to do step three by hand.
99
242000
3000
duke dhene mesim, berrja e llogarise me dore, e cila eshte dhe hape i trete qe nefolem pak me pare.
04:20
Yet, that's the one step computers can do
100
245000
2000
Kompjuterat mund te bejne te njejten gje ne po kete menyre, cfare bejme ne me dore
04:22
better than any human after years of practice.
101
247000
3000
dhe kompjuterat kane mundesine te bejne te njejtat llogari, me me saktesi sesa te gjithe njerzit qe kane vite te shumta eksperience ne matematike.
04:25
Instead, we ought to be using computers
102
250000
3000
Ne vend te dores, ne duhet te perdorim kompjuterat
04:28
to do step three
103
253000
2000
per te zgjithur hapin e trete te problemit
04:30
and using the students to spend much more effort
104
255000
3000
ne kete menyre studentet e zvendesojne kete kohe
04:33
on learning how to do steps one, two and four --
105
258000
2000
per te mesuar si te bejne fazen e pare; fazen e dyte, dhe fazen e kater--
04:35
conceptualizing problems, applying them,
106
260000
3000
duke dhene koncepte problematike, duke i applikuar keto,
04:38
getting the teacher to run them through how to do that.
107
263000
3000
dhe duke e pyetur mesuesin se si mund te vene keto probleme ne aplikime me praktike.
04:41
See, crucial point here:
108
266000
2000
E pra, pike kryesore ketu:
04:43
math is not equal to calculating.
109
268000
2000
matematika nuke eshte e njejte dhe e barabarte me faktoret llogaritse.
04:45
Math is a much broader subject than calculating.
110
270000
3000
Matematika eshte nje lende me e thelle sesa mbledhje dhe shumezime apo ceshtje llogaritare.
04:48
Now it's understandable that this has all got intertwined
111
273000
3000
Tani eshte mese e kuptushme qe keshte ehste mese e bashkangjitur
04:51
over hundreds of years.
112
276000
2000
me qindra vitesh.
04:53
There was only one way to do calculating and that was by hand.
113
278000
3000
Gjendej vetem nje menyre te beje matematike dhe ajo menyre eshte berrja me dore.
04:56
But in the last few decades
114
281000
2000
Por ne disa dekadat e fundit
04:58
that has totally changed.
115
283000
2000
kjo lloj ceshtje ka ndryshur komplet.
05:00
We've had the biggest transformation of any ancient subject
116
285000
3000
Ky eshte transformimi me i madh nga te gjitha lendet e tjere te lashtesise
05:03
that I could ever imagine with computers.
117
288000
3000
imagjinata me kompjuterrat dhe cfare mund te bejme me ta.
05:07
Calculating was typically the limiting step,
118
292000
2000
Llogaria ishte tipikisht nje faze e matur,
05:09
and now often it isn't.
119
294000
2000
dhe me pas, tani asqe nuk sihet ne fjale.
05:11
So I think in terms of the fact that math
120
296000
2000
E pra, Une mendoj ne fakte me baza qe matematika
05:13
has been liberated from calculating.
121
298000
3000
ka dale si rrjedhoje e fakteve llogaritare.
05:16
But that math liberation didn't get into education yet.
122
301000
3000
Por, liberalizimi i matematikes nuk u shfaq menjehere ne akademite edukative.
05:19
See, I think of calculating, in a sense,
123
304000
2000
E shikoni pra, Une e paramendoj faktet llogaritse ne nje kuptim
05:21
as the machinery of math.
124
306000
2000
te makinerise matematike.
05:23
It's the chore.
125
308000
2000
Pra mund te them qe eshte nje detyre e pergjithshme.
05:25
It's the thing you'd like to avoid if you can, like to get a machine to do.
126
310000
3000
Eshte nje gje e tille qe ne shumice e rrasteve do ti shmangesh, po pate mundesine, per shembull perdor nje makine llogaritse ne vend qe ti besh me dore.
05:29
It's a means to an end, not an end in itself,
127
314000
3000
Eshte nje ceshtje qe i erdhi fundi perfundimisht, jo nje ceshtje e pazgjithshme,
05:34
and automation allows us
128
319000
2000
makinat automatike na japin mundesine te bejme nje gje te tille
05:36
to have that machinery.
129
321000
2000
nepermjet perdorimit te tyre.
05:38
Computers allow us to do that --
130
323000
2000
Kompjuterat na lejojne te bejme nje gje te tille--
05:40
and this is not a small problem by any means.
131
325000
3000
dhe ky nuk eshte nje problem absolutisht i vogel.
05:43
I estimated that, just today, across the world,
132
328000
3000
Une mendova per afersisht qe sot, ne te gjithe boten,
05:46
we spent about 106 average world lifetimes
133
331000
3000
ne kalojme 106 mesatarisht kohen e jetes tone
05:49
teaching people how to calculate by hand.
134
334000
3000
duke mesuar dhe edukuar njerzit si te bejne matematike me dore.
05:52
That's an amazing amount of human endeavor.
135
337000
3000
Kjo eshte nje kohe shume e madhe dhe e perkushtueshme e njerezimit.
05:55
So we better be damn sure --
136
340000
2000
Keshtu pra ne duhet te jemi te sigurte--
05:57
and by the way, they didn't even have fun doing it, most of them --
137
342000
3000
dhe me qe ra fjala, ata nuk e kishin shume me qef te benin pune te tille, shume prej tyre--
06:00
so we better be damn sure
138
345000
2000
pra te jemi te sigurte
06:02
that we know why we're doing that
139
347000
2000
qe ne duhet te jemi ne dijeni pse po bejme nje gje te tille
06:04
and it has a real purpose.
140
349000
2000
dhe me patjeter qe ka nje qellim teper real.
06:06
I think we should be assuming computers
141
351000
2000
Une mendoj qe ne duhet te paramendojme qe kompjuterat
06:08
for doing the calculating
142
353000
2000
te cilat bejne keto llogari te tilla
06:10
and only doing hand calculations where it really makes sense to teach people that.
143
355000
3000
fakte llogaritare qe beheshin me dore, tani duhet ti shpjegohen njerzve dhe te kene kuptim qe ata mund ti perdorin ne jeten e perditshme.
06:13
And I think there are some cases.
144
358000
2000
Une mendoj qe ka disa raste.
06:15
For example: mental arithmetic.
145
360000
2000
Per shembull: aritmetika mendore.
06:17
I still do a lot of that, mainly for estimating.
146
362000
3000
akoma e perdor aritmetiken, kryesisht per raste qe dua te gje dicka perafersisht.
06:20
People say, "Is such and such true?"
147
365000
2000
Shume njerez me thone, " A eshte e vertete kjo apo ajo pergjigje?"
06:22
And I'll say, "Hmm, not sure." I'll think about it roughly.
148
367000
2000
Dhe une pergjigjem, "Hmmm, nuk jam i sigurte." Duhet te mendohem nje cike me shume.
06:24
It's still quicker to do that and more practical.
149
369000
2000
Eshte me shpejt dhe me praktike te japish nje pergjigje te tille.
06:26
So I think practicality is one case
150
371000
2000
Pra ne disa raste praktikisht
06:28
where it's worth teaching people by hand.
151
373000
2000
eshte me mire te mesosh disa menyra matematikore se si behen me dore.
06:30
And then there are certain conceptual things
152
375000
2000
Dhe po ashtu, ka disa raste konceptuale
06:32
that can also benefit from hand calculating,
153
377000
2000
qe behen me mire dhe me me hollesi me dore,
06:34
but I think they're relatively small in number.
154
379000
2000
por ato raste jane shume te rralla.
06:36
One thing I often ask about
155
381000
2000
Nje gje qe une pyes zakonisht
06:38
is ancient Greek and how this relates.
156
383000
3000
eshte greqishtja e lashte dhe menyra se si lidhet me te.
06:41
See, the thing we're doing right now
157
386000
2000
E pra, ajo qe po bejme ne tani eshte
06:43
is we're forcing people to learn mathematics.
158
388000
2000
shtyrja e njerezve te mesojne matematike.
06:45
It's a major subject.
159
390000
2000
Eshte nje lende kryesore.
06:47
I'm not for one minute suggesting that, if people are interested in hand calculating
160
392000
3000
Jo vetem per nje minute nuk po sugjeroj qe njerzit duhet te bejne matematike me dore me shume tani
06:50
or in following their own interests
161
395000
2000
ose ne raste qe ata kane interes te vecante
06:52
in any subject however bizarre --
162
397000
2000
megjithate, edhe pse duket e cuditshme
06:54
they should do that.
163
399000
2000
ata duhet te nenshtrohen zgjithjes te problemeve matematikore me dore, po te duan.
06:56
That's absolutely the right thing,
164
401000
2000
Eshte apsolutisht nje gje e drejte,
06:58
for people to follow their self-interest.
165
403000
2000
per ata njerez qe ndekin interesin e tyre.
07:00
I was somewhat interested in ancient Greek,
166
405000
2000
Une isha pak a shume i interesuar ne Greqishten e lashte,
07:02
but I don't think that we should force the entire population
167
407000
3000
por nuk mendoj qe ne duhet te sforcarim te gjithe popullaten
07:05
to learn a subject like ancient Greek.
168
410000
2000
te filloje te mesoje lenden e greqishtes te lashte.
07:07
I don't think it's warranted.
169
412000
2000
Asnjeher nuk mund te garantohet nje gje e tille.
07:09
So I have this distinction between what we're making people do
170
414000
3000
Pra, une kam kete lloj dallimi ne mes te dy gjerrave, ne po i sforcarim njerzit
07:12
and the subject that's sort of mainstream
171
417000
2000
ti nenshtrohen lendeve qe jane njera pas tjetres ne shkencen perkatse
07:14
and the subject that, in a sense, people might follow with their own interest
172
419000
3000
dhe nje lende, qe ne nje lloj kuptimi, njerzit mund te ndjekin per interesat e veta
07:17
and perhaps even be spiked into doing that.
173
422000
2000
dhe ndoshta mund te jene te frymezuar per te mesuar nje lende te tille.
07:19
So what are the issues people bring up with this?
174
424000
3000
Pra, cilat jane pengesat te cilat njerzit mund te gjejne gjate kesaj situate?
07:22
Well one of them is, they say, you need to get the basics first.
175
427000
3000
Nje nga pengesat, mesa thuhet, ne duhet te kemi parasysh bazat kryesore fillimisht.
07:25
You shouldn't use the machine
176
430000
2000
Nuk duhet te perdorim makinat llogaritse
07:27
until you get the basics of the subject.
177
432000
2000
deri sa i kemi profesionuar basat fillestare dhe themelore te lendes te matematikes.
07:29
So my usual question is, what do you mean by "basics?"
178
434000
3000
Atehere pra, ketu lind pyetja perseri, cilat jane bazat themelore te matematikes?
07:32
Basics of what?
179
437000
2000
Cilat jane bazat?
07:34
Are the basics of driving a car
180
439000
2000
A jane bazat kryesore per te ngare nje makine?
07:36
learning how to service it, or design it for that matter?
181
441000
3000
apo per ti bere sherbim? apo ndertimi i ingjinierise te makines?
07:39
Are the basics of writing learning how to sharpen a quill?
182
444000
3000
Si jane bazat e shkruajtjes se si mund te mprehesh nje maje gjilpere?
07:43
I don't think so.
183
448000
2000
Nuk e mendoj nje gje te tille.
07:45
I think you need to separate the basics of what you're trying to do
184
450000
3000
Une mendoj se ju duhet te veconi basamentet kryesore se cfare kerkoni te beni
07:48
from how it gets done
185
453000
2000
dhe se si mund te filloje te behet
07:50
and the machinery of how it gets done
186
455000
3000
dhe makinerite se si mund te vazhdosh te perfundosh nje gje te tille
07:54
and automation allows you to make that separation.
187
459000
3000
dhe keshtu pra makinat automatike ju lejon you te ndani bazat nga njera tjetra.
07:57
A hundred years ago, it's certainly true that to drive a car
188
462000
3000
Njeqind vjet me perpara, sigurisht qe ishte e vertete te ngisje makinen
08:00
you kind of needed to know a lot about the mechanics of the car
189
465000
2000
dhe duhej te dije shume gjerra nga ana mekanike para se ta ngisje
08:02
and how the ignition timing worked and all sorts of things.
190
467000
3000
si punonte barometri dhe shume gjera te tjera.
08:06
But automation in cars
191
471000
2000
Por tani, makinat automatike
08:08
allowed that to separate,
192
473000
2000
bejne te mundur nje gje te tille qe nuk eshte nevoja te dish shume hollesira,
08:10
so driving is now a quite separate subject, so to speak,
193
475000
3000
pra, ngarrja e makines eshte jashtezakonisht nje ceshtje e ndryshme, me qe ra fjala,
08:13
from engineering of the car
194
478000
3000
nga ingjinieria e makines
08:16
or learning how to service it.
195
481000
3000
deri nga te mesuarit se si mund ti sherbesh makines per jete me te gjate.
08:20
So automation allows this separation
196
485000
2000
E pra, fakti qe eshte automatike na lejon kete vecori
08:22
and also allows -- in the case of driving,
197
487000
2000
dhe mbi te gjitha na ndihmon ne grajen e makines,
08:24
and I believe also in the future case of maths --
198
489000
2000
dhe jam mese i sigurte qe ne te ardhmen, ne disa raste te matematikes--
08:26
a democratized way of doing that.
199
491000
2000
me patjeter qe do te gjendet nje lloj me demokratik per te zgjithur raste me te ndryshme te ngarjes te makines.
08:28
It can be spread across a much larger number of people
200
493000
2000
Ajo menyre mund te perhapet nepermjet shume njerzve
08:30
who can really work with that.
201
495000
3000
te cilet mund te punojne me nje menyre te tille.
08:33
So there's another thing that comes up with basics.
202
498000
2000
Atehere pra, ketu na lind dhe nje gje tjeter bashke me bazat kryesore.
08:35
People confuse, in my view,
203
500000
2000
Nga pikpamja ime, ketu njerzit ngaterrohen,
08:37
the order of the invention of the tools
204
502000
3000
me ceshtjet e zbulimeve te veglave
08:40
with the order in which they should use them for teaching.
205
505000
3000
dhe rradha ne te cilat ata duhet ti perdorin per qellime akademike.
08:43
So just because paper was invented before computers,
206
508000
3000
Keshtu pra, edhe pse letra ishte zbuluar me perpara se kompjuteri,
08:46
it doesn't necessarily mean you get more to the basics of the subject
207
511000
3000
nuk do te thote qe ju jeni me te perkushtuar
08:49
by using paper instead of a computer
208
514000
2000
ne perdorimin e letres sesa ne perdorimin e kompjuterit
08:51
to teach mathematics.
209
516000
2000
per te shpjeguar lenden e matematikes.
08:55
My daughter gave me a rather nice anecdote on this.
210
520000
3000
Vajza ime me tregoi nje anektode ne kete rast te tille.
08:58
She enjoys making what she calls "paper laptops."
211
523000
3000
Ajo ka shume kenaqesi te madhe kurr merret me ndertimin e te cilave ajo i quan "kompjuter portative prej letre".
09:01
(Laughter)
212
526000
2000
(te qeshura)
09:03
So I asked her one day, "You know, when I was your age,
213
528000
2000
Nje dite une e pyeta, " Degjo, kur une isha mosha jote,
09:05
I didn't make these.
214
530000
2000
une nuk dija te beja nje gje te tille.
09:07
Why do you think that was?"
215
532000
2000
Si thua ti, pse nuk mundesha?"
09:09
And after a second or two, carefully reflecting,
216
534000
2000
Dhe pas ndertimit te te parit dhe te te dytit, me shume kujdes duke reflektuar,
09:11
she said, "No paper?"
217
536000
2000
ajo u pergjigj, " Nuk kishte leter?"
09:13
(Laughter)
218
538000
5000
(te qeshura)
09:19
If you were born after computers and paper,
219
544000
2000
Ne qoftese do te ishe lindur pas zbulimit te kompjuterave dhe letres,
09:21
it doesn't really matter which order you're taught with them in,
220
546000
3000
nuk ka rendesi se ne c'fare rradhe ikeni mesuar,
09:24
you just want to have the best tool.
221
549000
2000
ju deshironi te keni veglat e punimit me te mira.
09:26
So another one that comes up is "Computers dumb math down."
222
551000
3000
Keshtu pra, dhe nje gje tjeter qe lind eshte, " Kompjuterat e hedhin poshte fare matematiken."
09:29
That somehow, if you use a computer,
223
554000
2000
Ne nje fare menyre, ne qofte se ju perdorni nje kompjuter,
09:31
it's all mindless button-pushing,
224
556000
2000
eshte apsolutisht vetem shtypje butonash,
09:33
but if you do it by hand,
225
558000
2000
per ne qofte se ti zgjedh menyren per te berre matematike me dore (ne mend),
09:35
it's all intellectual.
226
560000
2000
eshte me patjeter teper intelektuale.
09:37
This one kind of annoys me, I must say.
227
562000
3000
Por duhet te dhem qe kjo looj menyre eshte teper e bezdishme.
09:40
Do we really believe
228
565000
2000
A jemi ne te vendosur qe
09:42
that the math that most people are doing in school
229
567000
2000
matematika qe po bejne njerzit tone ne shkolle
09:44
practically today
230
569000
2000
sot
09:46
is more than applying procedures
231
571000
2000
eshte praktikisht me shume sesa aplikimi i nje procedure
09:48
to problems they don't really understand, for reasons they don't get?
232
573000
3000
te problemeve te cilat ata nuke e kane idene fare, per arsy the fakte qe ata nuk mund te jene ne dijeni?
09:51
I don't think so.
233
576000
2000
Nuk e besoj.
09:53
And what's worse, what they're learning there isn't even practically useful anymore.
234
578000
3000
Dhe akoma me keq, ato qe ata po mesojne nuk jane me praktikisht te nevojshme ne kohen e sotme.
09:56
Might have been 50 years ago, but it isn't anymore.
235
581000
3000
Mund te kene qene te nevojshme 50 vjet me perpara, por jo me tani.
09:59
When they're out of education, they do it on a computer.
236
584000
3000
Kur ata nuk merren me me shkencat akademike, ata do te perdorin kompjuterat per cfare do lloj gjeje.
10:02
Just to be clear, I think computers can really help with this problem,
237
587000
3000
Per te qene me i qarte, Une mendoj qe kompjuterat mund te na ndihmojne shume me kete problem,
10:05
actually make it more conceptual.
238
590000
2000
e paraqitin me konceptuale.
10:07
Now, of course, like any great tool,
239
592000
2000
Tani, sigurisht, ashtu si te gjitha veglat e tjera,
10:09
they can be used completely mindlessly,
240
594000
2000
kompjuterat mund te perdoren pa u menduar,
10:11
like turning everything into a multimedia show,
241
596000
3000
tamam sikur shikon nje shfaqje ne television,
10:14
like the example I was shown of solving an equation by hand,
242
599000
3000
ashtu si shembulli qe ju tregova kur po zgjithnim ekuacionet me dore,
10:17
where the computer was the teacher --
243
602000
2000
kompjuteri po zvendesonte mesuesin--
10:19
show the student how to manipulate and solve it by hand.
244
604000
3000
gjithashtu, dhe mund te shpjegonte studenteve se si mund te manipulonin dhe gjenin zgjidhjen e problemeve dhe me dore.
10:22
This is just nuts.
245
607000
2000
Kjo eshte jashte mase e pa mendushme.
10:24
Why are we using computers to show a student how to solve a problem by hand
246
609000
3000
Pse ne jemi ne kete situate qe po perdorim kompjuterat ne menyre qe tju shpjegojme studenteve se si mund te zgjithin problemat me dore?
10:27
that the computer should be doing anyway?
247
612000
2000
mbi te gjitha pse te mos e lejojme kompjuterin te zvendesoje zgjithjen e problemeve me dore?
10:29
All backwards.
248
614000
2000
Te gjitha mbrapsh.
10:31
Let me show you
249
616000
2000
Le te shikojme
10:33
that you can also make problems harder to calculate.
250
618000
3000
se si mund te bejme nje problem akoma me te veshtire per te zgjidhur.
10:36
See, normally in school,
251
621000
2000
E pra, normalisht ne shkolle,
10:38
you do things like solve quadratic equations.
252
623000
3000
ne zgjidhim per shembull ekuacione te shkalles te dyte, me rrenje katrore.
10:41
But you see, when you're using a computer,
253
626000
3000
Por, ne kemi mundesi te shikojme te njejten menyre zgjedhje, duke perdor nje kompjuter,
10:44
you can just substitute.
254
629000
4000
duke bere zvendesime.
10:48
You can make it a quartic equation. Make it kind of harder, calculating-wise.
255
633000
2000
Ne mund ta bejme ekuacion te shkalles te kater. E pra duke e veshtirresuar me shume per ti dhene zgjidhje.
10:50
Same principles applied --
256
635000
2000
Disa Teori te cilat jane vene ne aplikim--
10:52
calculations, harder.
257
637000
2000
llogaritje matematikore me te veshtira.
10:54
And problems in the real world
258
639000
2000
Dhe disa probleme ne jeten e perditshme praktikore
10:56
look nutty and horrible like this.
259
641000
2000
duken sikur jane jashte normave reale.
10:58
They've got hair all over them.
260
643000
2000
Kane pengesa te medha ne cdo drejtim
11:00
They're not just simple, dumbed-down things that we see in school math.
261
645000
3000
Ato nuk jane dhjesht problema elementare, problema matematike qe ne hasim gjate shkolles ne lenden e matematikes.
11:04
And think of the outside world.
262
649000
2000
Aq me teper po te mendosh dhe jashte normave, te jetes te perditshme.
11:06
Do we really believe that engineering and biology
263
651000
2000
A jemi te sigurte qe ingjinieria dhe bilogjia
11:08
and all of these other things
264
653000
2000
dhe te gjitha lendet e tjera
11:10
that have so benefited from computers and maths
265
655000
2000
te cilat kane perfituar nga perdorimi i kompjuterave dhe matematika
11:12
have somehow conceptually gotten reduced by using computers?
266
657000
3000
jane pak a shume konceptualisht zvogeluar nga perdorimi i shumte i kompjuterave?
11:15
I don't think so -- quite the opposite.
267
660000
3000
Nuk besoj-- me tej, eshte komplet e kunderta.
11:18
So the problem we've really got in math education
268
663000
3000
Pra, problemi qe ne hasim tani ne shkencat akademike te matematikes
11:21
is not that computers might dumb it down,
269
666000
3000
nuk mendoj qe perdorimi i kompjuterave ndikon ne zvogelimin apo zvendesimin e lendes
11:24
but that we have dumbed-down problems right now.
270
669000
3000
por me konkretisht eshte nje problem qe ne hasim tani per tani
11:27
Well, another issue people bring up
271
672000
2000
Gjithashtu, nje tjeter pengese qe njerzit po hasin
11:29
is somehow that hand calculating procedures
272
674000
2000
eshte pak a shume procedura(metoda) e hapave te llogaritjes me dore
11:31
teach understanding.
273
676000
2000
dhe shpjegimi i tyre per ti bere me te kuptushme.
11:33
So if you go through lots of examples,
274
678000
2000
Atehere pra, n.q.s. merresh me zgjidhjen e shume shembujve,
11:35
you can get the answer,
275
680000
2000
ju arrini perfundimisht ne nje pergjigje te sakte,
11:37
you can understand how the basics of the system work better.
276
682000
3000
gjithashtu, ju mund te kuptoni dhe pervetesoni dhe bazat e menyrave matematike.
11:40
I think there is one thing that I think very valid here,
277
685000
3000
Une besoj qe nje gje eshte mese e vertete ketu,
11:43
which is that I think understanding procedures and processes is important.
278
688000
3000
kuptimi i procesit dhe procedurave te matematikes eshte jashtezakonisht e rendesishme.
11:47
But there's a fantastic way to do that in the modern world.
279
692000
3000
Por, nje menyre fantastike gjendet per te zgjithur kete problem ne kohen e modernizimit te sotem.
11:50
It's called programming.
280
695000
3000
Kjo lloj menyre quhet dega e programimit.
11:53
Programming is how most procedures and processes
281
698000
2000
Programimi eshte perkatesisht i specializuar per te gjitha keto procese dhe procedura
11:55
get written down these days,
282
700000
2000
te cilat jane zhvilluar mjaft ne ditet e sotme,
11:57
and it's also a great way
283
702000
2000
gjithashtu eshte dhe nje menyre maft e mire
11:59
to engage students much more
284
704000
2000
te interesosh studentet akoma me teper
12:01
and to check they really understand.
285
706000
2000
ne kete menure, te jepet mundesia dhe te kontrollsh cdhe nivelin e kuptimit(nese e kuptuan te gjithe apo jo)
12:03
If you really want to check you understand math
286
708000
2000
N.q.s. deshiron me patjeter te kontrollosh nese te gjithe e kuptuan
12:05
then write a program to do it.
287
710000
3000
matematiken(temen pe te cilen flet), atehere zhvillo nje aplikim programimi qe te beje punen per ty(kontrolloje nivelin e kuptimit te nivelit te matematikes)
12:08
So programming is the way I think we should be doing that.
288
713000
3000
Pra, programimi eshte nje nga menyrat me perkatse per ne ne kete ceshtje
12:11
So to be clear, what I really am suggesting here
289
716000
2000
Qartesisht, Ate qe dua te sugjeroj ketu
12:13
is we have a unique opportunity
290
718000
2000
eshte nje krijim mundesi teper e vecante
12:15
to make maths both more practical
291
720000
2000
per te bere matematiken me terheqse dhe praktike
12:17
and more conceptual, simultaneously.
292
722000
3000
dhe praktikisht, me konceptuale,
12:20
I can't think of any other subject where that's recently been possible.
293
725000
3000
Nuk e mendoj qe kjo mund te jete e mundur ne ndonje lende tjeter
12:23
It's usually some kind of choice
294
728000
2000
Zakonisht eshte me teper rrugezgjithja jote
12:25
between the vocational and the intellectual.
295
730000
2000
ndermjet menyres intelektuale dhe teknike.
12:27
But I think we can do both at the same time here.
296
732000
3000
Por ne kemi mundesi te bejme te dyja teknikat.
12:32
And we open up so many more possibilities.
297
737000
3000
Ne kete menyre ne hapim mundesi me te shumta.
12:35
You can do so many more problems.
298
740000
2000
Mundesira per te zgjithur probleme te tjera.
12:37
What I really think we gain from this
299
742000
2000
Dhe dicka tjeter qe une besoj, eshte perfitimi
12:39
is students getting intuition and experience
300
744000
3000
qe studentet fitojne prirje dhe pervoje
12:42
in far greater quantities than they've ever got before.
301
747000
3000
me teper sesa kishin.
12:45
And experience of harder problems --
302
750000
2000
Dhe po qe se pate pervoje me probleme me te veshtira--
12:47
being able to play with the math, interact with it,
303
752000
2000
bashkepunimi nepermjet lendes te matematikes,
12:49
feel it.
304
754000
2000
drejt per drejt.
12:51
We want people who can feel the math instinctively.
305
756000
3000
ne duam qe njerzit te ndiejne matematiken dhe duan lenden naturalisht, pa sforcarie.
12:54
That's what computers allow us to do.
306
759000
3000
Dhe nje gje te tille na lejojne kompjuterat.
12:57
Another thing it allows us to do is reorder the curriculum.
307
762000
3000
Dicka tjeter qe ne jemi te mundur te bejme eshte ristrukturimi i lendeve te pergjithshme matematikore.
13:00
Traditionally it's been by how difficult it is to calculate,
308
765000
2000
Zakonisht, ka qene e matur se sa e veshtire eshte te besh llogari matematikore,
13:02
but now we can reorder it
309
767000
2000
por tani ne mund to perseritim ato
13:04
by how difficult it is to understand the concepts,
310
769000
2000
nepermejt nivelit te konceptiti dhe shkalles te veshtiresise,
13:06
however hard the calculating.
311
771000
2000
dhe perllogaritjes.
13:08
So calculus has traditionally been taught very late.
312
773000
3000
Keto lende zakonisht jane dhene ne vitet e mevonshme shkollore.
13:11
Why is this?
313
776000
2000
Pse keshtu?
13:13
Well, it's damn hard doing the calculations, that's the problem.
314
778000
3000
Sepse eshte apsolutisht e veshtire te merresh me faktore dhe llogaritje financiare ne moshe te vogel.
13:17
But actually many of the concepts
315
782000
2000
Por, aktualisht shumica e koncepteve
13:19
are amenable to a much younger age group.
316
784000
3000
jane me terheqese nga grupe moshatare me te vogla.
13:22
This was an example I built for my daughter.
317
787000
3000
Ky vlen dhe si shembull per vajzen time.
13:25
And very, very simple.
318
790000
2000
i cila eshte shume e thjesht.
13:28
We were talking about what happens
319
793000
2000
Ne po bisedojme se cfare do te ndodhe
13:30
when you increase the number of sides of a polygon
320
795000
2000
kur numri i poligoneve shtohet
13:32
to a very large number.
321
797000
2000
dhe nenkuptimi i numrave ne shkalle masive.
13:36
And of course, it turns into a circle.
322
801000
2000
Dhe sigurisht, qe po kjo lloj menyre kthehet perseri.
13:38
And by the way, she was also very insistent
323
803000
2000
Dhe me qe ra fjala, vajsa ime ishte shume kembengulse
13:40
on being able to change the color,
324
805000
2000
dhe arriti te ndryshonte dhe ngjyren e poligonit,
13:42
an important feature for this demonstration.
325
807000
3000
nje cilesi teper e rendesishme per kete lloj shembulli qe ne po flasim tani.
13:46
You can see that this is a very early step
326
811000
3000
E pra, ju e shikoni qe ky eshte nje hap mjaft fillestar
13:49
into limits and differential calculus
327
814000
2000
dhe duke hyre ne limitet dhe ekuacionet diferenciale
13:51
and what happens when you take things to an extreme --
328
816000
3000
dhe c'fare ndodh kur ne i marrim gjerrat me lart--
13:54
and very small sides and a very large number of sides.
329
819000
2000
duke i zmadhuar dhe zvogeluar pjeset e poligonit ashtu si te deshirosh
13:56
Very simple example.
330
821000
2000
Shume shembull i thjeshte, pra.
13:58
That's a view of the world
331
823000
2000
Keshtu eshte dhe pikpamja e vendeve te tjerra
14:00
that we don't usually give people for many, many years after this.
332
825000
3000
qe ne nuk ju afrojme keto gjerra njerzve per shume vite.
14:03
And yet, that's a really important practical view of the world.
333
828000
3000
Akoma me teper, kjo eshte nje pikpamje praktike dhe e rendesishme per te gjithe boten.
14:06
So one of the roadblocks we have
334
831000
3000
Nje nga urrat ndertuese qe ne kemi
14:09
in moving this agenda forward
335
834000
3000
per te vazhduar me tej me kete agjende
14:12
is exams.
336
837000
2000
eshte dhenia e provimeve.
14:14
In the end, if we test everyone by hand in exams,
337
839000
3000
Me ne fund, n.q.s ne u japim te behen provime me dore per te gjithe,
14:17
it's kind of hard to get the curricula changed
338
842000
3000
na krijon veshtiresi ne ndryshimin e lendeve te tjera te pergjithshme
14:20
to a point where they can use computers
339
845000
2000
ne nje shkalle ne te cilen ne mund te veme ne perdorim kompjuterat
14:22
during the semesters.
340
847000
3000
gjate kohes te simestrave shkollore.
14:25
And one of the reasons it's so important --
341
850000
2000
Dhe nje nga arsyet qe eshte kaq e rrendesishme--
14:27
so it's very important to get computers in exams.
342
852000
3000
eshte veshtiresia e provimeve te vihen ne programe kompjutersha.
14:30
And then we can ask questions, real questions,
343
855000
3000
Me pas ne na jepet mundesi te bejme pyetje me te shumta,
14:33
questions like, what's the best life insurance policy to get? --
344
858000
3000
si per shembull, cila eshte inshuranca me ekonomike dhe me e pershtatshme per mua?--
14:36
real questions that people have in their everyday lives.
345
861000
3000
pyetje me te nevojshme te cilet njerzit perdorin ne jeten e perditshme.
14:40
And you see, this isn't some dumbed-down model here.
346
865000
2000
E pra, e shikoni qe ky model nuk eshte fare i pavlefshem.
14:42
This is an actual model where we can be asked to optimize what happens.
347
867000
3000
Ky eshte nje model ku ne mund te bejme pyetje se c'fare mund te ndodhe gjate optimizimit.
14:45
How many years of protection do I need?
348
870000
2000
Per sa vjet mbrojtje kemi nevoje?
14:47
What does that do to the payments
349
872000
2000
Si ndikon kjo ne pagesat
14:49
and to the interest rates and so forth?
350
874000
3000
interesat e perqindjeve dhe me rradhe?
14:52
Now I'm not for one minute suggesting it's the only kind of question
351
877000
3000
Mos me keqkuptoni qe ne asnje menyre, une nuk sugjeroj qe kjo eshte e vetmja rruge
14:55
that should be asked in exams,
352
880000
2000
qe ne duhet te ndjekim per te dhene provime,
14:57
but I think it's a very important type
353
882000
2000
por mendoj qe eshte shume e rrendesishme
14:59
that right now just gets completely ignored
354
884000
3000
qe ne mos harrojme dhe kete ceshtje
15:02
and is critical for people's real understanding.
355
887000
3000
sepse eshte teper kritike per nenkuptimin e njerzve ne jeten e perditshme.
15:05
So I believe [there is] critical reform
356
890000
3000
Jam plot i bindur qe gjendet nje reforme kritike
15:08
we have to do in computer-based math.
357
893000
2000
qe ne duhet te bejme me patjeter matematike qe eshte ne mardhenie me programet kompjuterike
15:10
We have got to make sure
358
895000
2000
Ne duhet te jemi mese te sigurte
15:12
that we can move our economies forward,
359
897000
3000
qe ne duhet te zhvillojme dhe te ecim perpara me ekonomine,
15:15
and also our societies,
360
900000
2000
dhe me zhvillimin e njerezimit,
15:17
based on the idea that people can really feel mathematics.
361
902000
3000
nepermjet idese qe njerzit e duan dhe jane te frymezuar per te mesuar matematike.
15:22
This isn't some optional extra.
362
907000
3000
Kjo nuk eshte nje rruge e humbur.
15:25
And the country that does this first
363
910000
2000
Dhe vendi qe ka fillaur se pari me kete
15:27
will, in my view, leapfrog others
364
912000
3000
do te ece me shume nga te tjeret, me sa besoj une,
15:30
in achieving a new economy even,
365
915000
3000
duke avantazhuar dhe ne zhvillimin e nje ekonomie te re,
15:33
an improved economy,
366
918000
2000
nje ekonomi me te permiresuar,
15:35
an improved outlook.
367
920000
2000
me pikpamje me te qarta.
15:37
In fact, I even talk about us moving
368
922000
2000
Faktikisht, une mendoj
15:39
from what we often call now the "knowledge economy"
369
924000
3000
dhe qe ne e quajme tani " Njohuria ekonomike"
15:42
to what we might call a "computational knowledge economy,"
370
927000
3000
ne iden qe une gjithashtu mund ta quaj " Njohurite Ekonomike nepermjet Kompjuterit,"
15:45
where high-level math is integral to what everyone does
371
930000
3000
e cila matematika e nje shkalle te larte eshte integrale me ate qe secili nga ne
15:48
in the way that knowledge currently is.
372
933000
2000
gjenden ne njohurine e sotme.
15:50
We can engage so many more students with this,
373
935000
3000
Ne mund te jemi ne gjendje te angazhojme shume studente
15:53
and they can have a better time doing it.
374
938000
3000
me kete lloj njohurie dhe jam mese i bindur qe ata do te kene kenaqesi me te madhe ne krahasim me mendimin qe eshte matematike dhe eshte e merzitshme.
15:56
And let's understand:
375
941000
2000
Dhe ndersa ne e kuptojme:
15:58
this is not an incremental sort of change.
376
943000
3000
kjo nuk eshte nje lloj zvogelues i ketij ndryshimi qe ne po flasim.
16:02
We're trying to cross the chasm here
377
947000
2000
Ne po perpiqemi te kalojme kete pengese
16:04
between school math and the real-world math.
378
949000
2000
midis matematikes akademike dhe matematikes ne jeten e perditshme praktike.
16:06
And you know if you walk across a chasm,
379
951000
2000
Dhe ju e dini me teper qe n.q.s. ju hidhni hapin ne nje pengese te tille,
16:08
you end up making it worse than if you didn't start at all --
380
953000
3000
ju do te perfundoni ne nje situate me te veshtire ne krahasim me fillimin,
16:11
bigger disaster.
381
956000
2000
veshtiresi me e madhe.
16:13
No, what I'm suggesting
382
958000
2000
No, c'fare une jam duke sugjeruar
16:15
is that we should leap off,
383
960000
2000
eshte kaperzimi i kesaj veshtiresie,
16:17
we should increase our velocity
384
962000
2000
ne duhet te shtojme shpejtesine e ketij ndryshimi ne ceshtjen e matematikes akademike
16:19
so it's high,
385
964000
2000
neduhet te pershpejtojme, qe shpejtesie e ndryshimit te jete e madhe,
16:21
and we should leap off one side and go the other --
386
966000
3000
dhe ne duhet te kaperzejme nje ane dhe duhet te hidhemi ne anene tjeter--
16:24
of course, having calculated our differential equation very carefully.
387
969000
3000
sigurisht, duke parallogaritur ekuacionin diferencial me shume kujdes.
16:27
(Laughter)
388
972000
2000
(spektatoret qeshin)
16:29
So I want to see
389
974000
2000
Atehere, Une dua te shikoj
16:31
a completely renewed, changed math curriculum
390
976000
2000
kethimin e lendeve te matematikes qe jane te ndryshuar, komplet te reja mbi ato basa qe ne permendem pak me pare
16:33
built from the ground up,
391
978000
2000
duke filluar ndryshimet qe nga basat me elementare,
16:35
based on computers being there,
392
980000
2000
nepermejt perdorimit te kompjuterave,
16:37
computers that are now ubiquitous almost.
393
982000
2000
kompjuterate te cilet pothuajse gjenden ne cdo lloj ambienti.
16:39
Calculating machines are everywhere
394
984000
2000
makinat llogaritse gjenden kudo
16:41
and will be completely everywhere in a small number of years.
395
986000
3000
dhe keto makina llogaritse do te jene kudo dhe per disa vite te tjera
16:44
Now I'm not even sure if we should brand the subject as math,
396
989000
4000
Tani, une nuk jame i bindur nese ne duhet te cilesojme kete ceshtje si matematike,
16:48
but what I am sure is
397
993000
2000
por, per c'fare jam i bindur
16:50
it's the mainstream subject of the future.
398
995000
2000
eshte shtrirja e kesaj ceshtje ne te ardhmen.
16:53
Let's go for it,
399
998000
3000
Le te fillojme,
16:56
and while we're about it,
400
1001000
2000
dhe ne te njejten kohe,
16:58
let's have a bit of fun,
401
1003000
2000
ne duhet te ndjejme kenaqesine,
17:00
for us, for the students and for TED here.
402
1005000
3000
midis nesh, midis studenteve qe merren me matematike, dhe per kete komunitet ketu ne TED.
17:03
Thanks.
403
1008000
2000
Faleminderit.
17:05
(Applause)
404
1010000
7000
(Duartrokitje)
Translated by Rozana Reffit
Reviewed by Helena Bedalli

▲Back to top

ABOUT THE SPEAKER
Conrad Wolfram - Mathematician
Conrad Wolfram runs the worldwide arm of Wolfram Research, the mathematical lab behind the cutting-edge knowledge engine Wolfram Alpha.

Why you should listen

Conrad Wolfram is the strategic director of Wolfram Research, where his job, in a nutshell, is understanding and finding new uses for the Mathematica technology. Wolfram is especially passionate about finding uses for Mathematica outside of pure computation, using it as a development platform for products that help communicate big ideas. The Demonstrations tool, for instance, makes a compelling case for never writing out another equation -- instead displaying data in interactive, graphical form.

Wolfram's work points up the changing nature of math in the past 30 years, as we've moved from adding machines to calculators to sophisticated math software, allowing us to achieve ever more complex computational feats. But, Wolfram says, many schools are still focused on hand-calculating; using automation, such as a piece of software, to do math is sometimes seen as cheating. This keeps schools from spending the time they need on the new tools of science and mathematics. As they gain significance for everyday living, he suggests, we need to learn to take advantage of these tools and learn to use them young. Learn more at computerbasedmath.org.

More profile about the speaker
Conrad Wolfram | Speaker | TED.com