English-Video.net comment policy

The comment field is common to all languages

Let's write in your language and use "Google Translate" together

Please refer to informative community guidelines on TED.com

TEDGlobal 2017

Tania Douglas: To design better tech, understand context

Filmed
Views 353,856

What good is a sophisticated piece of medical equipment to people in Africa if it can't handle the climate there? Biomedical engineer Tania Douglas shares stories of how we're often blinded to real needs in our pursuit of technology -- and how a deeper understanding of the context where it's used can lead us to better solutions.

- Biomedical engineering professor
Tania Douglas imagines how biomedical engineering can help address some of Africa's health challenges. Full bio

This is an equipment graveyard.
00:12
It's a typical final resting place
00:15
for medical equipment
from hospitals in Africa.
00:17
Now, why is this?
00:20
Most of the medical devices
used in Africa are imported,
00:22
and quite often, they're not suitable
for local conditions.
00:26
They may require trained staff
00:31
that aren't available to operate
and maintain and repair them;
00:34
they may not be able to withstand
high temperatures and humidity;
00:38
and they usually require a constant
and reliable supply of electricity.
00:42
An example of a medical device
00:48
that may have ended up
in an equipment graveyard at some point
00:50
is an ultrasound monitor
to track the heart rate of unborn babies.
00:55
This is the standard of care
in rich countries.
01:00
In low-resource settings,
the standard of care is often
01:03
a midwife listening
to the baby's heart rate
01:07
through a horn.
01:10
Now, this approach has been around
for more than a century.
01:12
It's very much dependent on the skill
and the experience of the midwife.
01:16
Two young inventors from Uganda
01:22
visited an antenatal clinic
at a local hospital a few years ago,
01:25
when they were students
in information technology.
01:29
They noticed that quite often,
01:33
the midwife was not able
to hear any heart rate
01:36
when trying to listen to it
through this horn.
01:39
So they invented their own
fetal heart rate monitor.
01:42
They adapted the horn
and connected it to a smartphone.
01:48
An app on the smartphone
records the heart rate, analyzes it
01:52
and provides the midwife
with a range of information
01:57
on the status of the baby.
02:00
These inventors --
02:03
(Applause)
02:04
are called Aaron Tushabe
and Joshua Okello.
02:06
Another inventor, Tendekayi Katsiga,
02:10
was working for an NGO in Botswana
that manufactured hearing aids.
02:14
Now, he noticed that
these hearing aids needed batteries
02:20
that needed replacement,
02:25
very often at a cost
that was not affordable
02:27
for most of the users that he knew.
02:29
In response, and being an engineer,
Tendekayi invented
02:32
a solar-powered battery charger
with rechargeable batteries,
02:37
that could be used in these hearing aids.
02:40
He cofounded a company called Deaftronics,
02:43
which now manufactures the Solar Ear,
02:47
which is a hearing aid powered
by his invention.
02:50
My colleague, Sudesh Sivarasu,
invented a smart glove
02:55
for people who have suffered from leprosy.
03:01
Even though their disease
may have been cured,
03:03
the resulting nerve damage
will have left many of them
03:06
without a sense of touch in their hands.
03:10
This puts them at risk of injury.
03:12
The glove has sensors
to detect temperature and pressure
03:16
and warn the user.
03:20
It effectively serves
as an artificial sense of touch
03:22
and prevents injury.
03:26
Sudesh invented this glove
after observing former leprosy patients
03:28
as they carried out
their day-to-day activities,
03:32
and he learned about the risks
and the hazards in their environment.
03:35
Now, the inventors that I've mentioned
03:41
integrated engineering with healthcare.
03:43
This is what biomedical engineers do.
03:47
At the University of Cape Town,
03:50
we run a course called
Health Innovation and Design.
03:52
It's taken by many of our graduate
students in biomedical engineering.
03:55
The aim of the course
is to introduce these students
04:00
to the philosophy of the design world.
04:03
The students are encouraged
to engage with communities
04:06
as they search for solutions
to health-related problems.
04:09
One of the communities that we work with
is a group of elderly people
04:13
in Cape Town.
04:16
A recent class project had the task
of addressing hearing loss
04:17
in these elderly people.
04:21
The students, many of them
being engineers,
04:23
set out believing that they
would design a better hearing aid.
04:26
They spent time with the elderly,
04:31
chatted to their healthcare providers
and their caregivers.
04:33
They soon realized that, actually,
adequate hearing aids already existed,
04:37
but many of the elderly who needed them
and had access to them
04:42
didn't have them.
04:46
And many of those who had hearing aids
04:47
wouldn't wear them.
04:50
The students realized
04:52
that many of these elderly people
were in denial of their hearing loss.
04:54
There's a stigma attached
to wearing a hearing aid.
04:58
They also discovered that the environment
in which these elderly people lived
05:01
did not accommodate their hearing loss.
05:06
For example, their homes
and their community center
05:08
were filled with echoes
that interfered with their hearing.
05:12
So instead of developing and designing
a new and better hearing aid,
05:15
the students did an audit
of the environment,
05:21
with a view to improving the acoustics.
05:23
They also devised a campaign
to raise awareness of hearing loss
05:27
and to counter the stigma
attached to wearing a hearing aid.
05:31
Now, this often happens
when one pays attention to the user --
05:35
in this case, the elderly --
05:39
and their needs and their context.
05:40
One often has to move away
from the focus of technology
05:43
and reformulate the problem.
05:46
This approach to understanding a problem
through listening and engaging
05:48
is not new,
05:52
but it often isn't followed by engineers,
05:54
who are intent on developing technology.
05:57
One of our students has a background
in software engineering.
06:01
He had often created products for clients
06:05
that the client ultimately did not like.
06:07
When a client would reject a product,
06:10
it was common at his company
06:13
to proclaim that the client
just didn't know what they wanted.
06:15
Having completed the course,
the student fed back to us
06:19
that he now realized
that it was he who hadn't understood
06:22
what the client wanted.
06:26
Another student gave us feedback
06:28
that she had learned
to design with empathy,
06:30
as opposed to designing for functionality,
06:33
which is what her engineering
education had taught her.
06:36
So what all of this illustrates is that
we're often blinded to real needs
06:39
in our pursuit of technology.
06:43
But we need technology.
06:45
We need hearing aids.
We need fetal heart rate monitors.
06:47
So how do we create more medical device
success stories from Africa?
06:51
How do we create more inventors,
06:56
rather than relying on
a few exceptional individuals
06:58
who are able to perceive real needs
07:02
and respond in ways that work?
07:04
Well, we focus on needs
and people and context.
07:06
"But this is obvious," you might say,
07:10
"Of course context is important."
07:12
But Africa is a diverse continent,
07:15
with vast disparities in health and wealth
and income and education.
07:17
If we assume that our engineers
and inventors already know enough
07:22
about the different African contexts
07:27
to be able to solve the problems
of our different communities
07:30
and our most marginalized communities,
07:34
then we might get it wrong.
07:36
But then, if we on the African continent
07:38
don't necessarily know enough about it,
07:41
then perhaps anybody with the right level
of skill and commitment could fly in,
07:44
spend some time listening and engaging
07:48
and fly out knowing enough
to invent for Africa.
07:51
But understanding context is not about
a superficial interaction.
07:55
It's about deep engagement
08:00
and an immersion in the realities
and the complexities of our context.
08:02
And we in Africa are already immersed.
08:07
We already have a strong and rich
base of knowledge
08:11
from which to start finding solutions
to our own problems.
08:15
So let's not rely too much on others
08:19
when we live on a continent
that is filled with untapped talent.
08:23
Thank you.
08:28
(Applause)
08:29

▲Back to top

About the speaker:

Tania Douglas - Biomedical engineering professor
Tania Douglas imagines how biomedical engineering can help address some of Africa's health challenges.

Why you should listen

Tania Douglas's research interests include medical imaging and image analysis, the development of contextually appropriate technology to improve health and health innovation management, particularly the mechanisms of medical device innovation in South Africa.

Douglas is engaged in capacity building for biomedical engineering and needs-based health technology innovation at universities across the African continent; two such projects are "Developing Innovative Interdisciplinary Biomedical Engineering Programs in Africa," in collaboration with Northwestern University and the Universities of Lagos and Ibadan, and "African Biomedical Engineering Mobility," in collaboration with Kenyatta University, Cairo University, Addis Ababa University, the Mbarara University of Science and Technology, the University of Lagos, and the University of Pisa. 

Douglas is the founding Editor-in-Chief of Global Health Innovation, an electronic open-access journal focusing on social and technological innovation for improved health, which launches in 2018. The journal aims to serve as a platform for disseminating research on health innovation in developing settings. 

Douglas has been a Humboldt Research Fellow at the Max Planck Institute for Neurological Research in Cologne and at the Free University of Berlin, an Honorary Senior Research Fellow at University College London, a Visiting Professor at Kenyatta University, and a Visiting Scholar at Northwestern University. She is a fellow of the South African Academy of Engineering, a member of the Academy of Science of South Africa, and a Fellow of the International Academy for Medical and Biological Engineering.

 

 

More profile about the speaker
Tania Douglas | Speaker | TED.com